joint spacing
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 40)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Sridhar Kasu ◽  
Amaranatha Mupireddy ◽  
Nilanjan Mitra

The state of research on narrow and non-dowel short jointed paneled concrete pavements (SPCP) is gaining attention on a large scale across the different parts of the world especially in Chile, the USA, and India. The jointed plain concrete pavements (JPCP), which are designed with slab sizes around 3.5 m x 4.5 m results in thicker slabs with a thickness of paving quality concrete (PQC) layer ranging from 280-330 mm depending on load and temperature stresses on Indian highways. In addition to thicker slabs, JPCP requires dowelled joints, which increases the initial cost of pavement. In order to reduce the thickness and initial cost of construction, the use of cast-in-situ SPCP laid on a strong foundation consisting of a dry lean concrete (DLC) base, cement treated sub base (CTSB) and subgrade is being studied. The square short slabs of size: 1 m, 1.5 m and 2 m joint spacing and of thickness 180 to 220 mm were designed and constructed as two full-scale test sections of SPCP on national highways (NH-2 and NH-33) in India. Slabs were constructed by introducing an initial vertical saw-cut of 3 to 5 mm wide and to a depth of 1/4th to 1/3rd of the thickness. The adopted construction practices through field demonstration and implication of SPCP for highways is the main thrust of the paper which helps the practitioners, designers for adopting such projects in the future.


2021 ◽  
Vol 13 (23) ◽  
pp. 13313
Author(s):  
Yaqiang Gong ◽  
Guangli Guo ◽  
Guojian Zhang ◽  
Kaikai Guo ◽  
Qiu Du ◽  
...  

While universal discrete element code (UDEC) is widely used for understanding the mechanism of large-scale strata movement and the effects of mining subsidence on the environment, the fundamental knowledge of how to set vertical joint spacing (VJS) in UDEC is still not fully understood. To address the knowledge gap, we first present a novel VJS calculation method, then conduct UDEC experiments, and finally compare the predictions of UDEC models with field subsidence observation. The results suggest the following: (1) when compared to the conventional VJS setting (1× to 3× bed thickness), the maximum surface subsidence (MSS) prediction via UDEC models based on our proposed VJS setting method is closer to field observation; (2) a smaller but varying VJS setting can also have the effect of a larger VJS setting; and (3) with the increase in VJS, MSS first drops, then rises, and reaches the minimum when VJS is set at approximately 7× bed thickness. This paper provides an explanation of the VJS setting in UDEC and establishes a bridge between the KS theory and VJS, which is helpful for the sustainable development of such an UDEC modeling strategy and for a better understanding of the influences of mining subsidence on the environment in mining-affected areas.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mehmet Sari

AbstractRepresentative elementary volume (REV) is defined as the usual size of a rock mass structure beyond which its mechanical properties are homogenous and isotropic, and its behavior can be modeled using the equivalent continuum approach. Determination of REV is a complex problem in rock engineering due to its definition ambiguity and application area. This study is one of the first attempts to define a REV for jointed rock masses using the equivalent continuum approach. It is aimed to numerically search a ratio between the characteristic size of an engineering structure and pre-existing joint spacing, which are the two most important contributing elements in assessing REV. For this purpose, four hypothetical engineering cases were investigated using the RS2 (Phase2 v. 9.0) finite element (FE) analysis program. An underground circular opening with a constant diameter, an open-pit mine with varying bench heights, a single bench with a constant height, and an underground powerhouse cavern with a known dimension were executed for possible changes in the safety factor and total displacement measurements under several joint spacing values. Different cut-off REVs were calculated for FE models depending on the type of excavation and measurement method. An average REV size of 19.0, ranging between a minimum of 2 for tunnels and a maximum of 48 for slopes, was found in numerical analysis. The calculated sizes of REV were significantly larger than the range of values (5 to 10) commonly reported in the relevant geotechnical literature.


Author(s):  
Yu-An Chen ◽  
Peter C. Taylor ◽  
Halil Ceylan ◽  
Xuhao Wang

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Weibin Guo ◽  
Shengwei Zhang ◽  
Yuhui Li

Coal wall spalling is regarded as a key technical problem influencing safe and efficient mining of large-mining-height working faces while the distribution of abutment pressure within the limit equilibrium zone (LEZ) influences coal wall spalling within a large-mining-height working face. This research attempted to explore the distribution characteristics of abutment pressure within the LEZ in a large-mining-height working face. For this purpose, the influences of the orientation of joints on mechanical characteristics of coal with joints and on the distribution of abutment pressure within the LEZ in the large-mining-height working face were analysed by theoretical analysis and numerical simulation. Research results show that the damage variable of coal with joints first rises, then decreases, and finally increases with increasing dip angle of the joints; as the azimuth of the joints increases, the damage variable first declines, then increases; the damage variable gradually declines with increasing joint spacing; an increase in the dip angle of joints corresponds to first reduction, then growth, and a final decrease of the abutment pressure at the same position in front of the coal walls; on certain conditions, the abutment pressure at the same position within the LEZ first rises, then declines as the azimuth of joints increases; with the growth of the joint spacing, the abutment pressure at the same position within the LEZ rises. The dip angle and azimuth of joints marginally affect the abutment pressure within the LEZ.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wanrong Liu ◽  
Chao Peng ◽  
Baoliang Zhang

Due to geological structure and artificial disturbance, a large number of joints and fissures are formed in the surrounding rock of an underground tunnel. In order to study the influence of joints on the failure characteristics of tunnels, three test schemes with different joint lengths, joint spacing, and joint positions are designed. The results show that the bearing capacity of the tunnel decreases with the increase in the joint length. With the increase in joint spacing, the bearing capacity of the tunnel decreases first and then increases. The crack propagation law of the three test schemes has experienced four stages: no crack, crack initiation, crack rapid development, and crack gradual reduction. The location of joints has the greatest influence on the failure mode of the tunnel. The crack is most likely to appear at the top of the tunnel and expand along the joint, mainly because it is easy to form tensile stress at the top of the tunnel and compressive stress concentration at the joint tip. Therefore, when excavating the tunnel in the underground space, the influence of joints on the tunnel should be considered. Analyzing the relationship between the tunnel and joints has important practical guiding significance for the control of the surrounding rock of the tunnel. Finally, the failure results of the indoor physical model and numerical model are compared and analyzed. They are in good agreement, which also reflects the rationality of numerical simulation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257245
Author(s):  
Gaojian Hu ◽  
Gang Ma

The existence of parallel joints has an impact on the size effect of the uniaxial compressive strength of rock, but the relationship is yet to be obtained. In this paper, the influence of parallel-joint spacing on the size effect and characteristic size of rock uniaxial compressive strength is studied by establishing five types of parallel-joint-spacing simulation schemes. The influence of parallel-joint spacing on the size effect of rock uniaxial compressive strength is explored by analyzing the stress–strain curves of rocks with different parallel-joint spacings and rock sizes. The relationship between the uniaxial compressive strength and the size of the rock with parallel joints and its special mathematical model are obtained, and the particular form of the compressive-strength characteristic size and parallel-joint spacing is obtained.


2021 ◽  
Author(s):  
Kendra K. Wernlé ◽  
Michael A. Sonnenfelt ◽  
Connor C. Leek ◽  
Elahe Ganji ◽  
Zachary Tata ◽  
...  

AbstractTendons and ligaments are structural tissues that attach to bone and are essential for joint mobility and stability in vertebrates. Tendon and ligament attachments (i.e., entheses) are often found at bony protrusions (i.e., eminences), and the shape and size of these protrusions depends on both mechanical forces and cellular cues during growth and development. The formation of tendon eminences also contributes to mechanical leverage for skeletal muscle. Fibroblast growth factor receptor (FGFR) signaling plays a critical role in bone development, and Fgfr1 and Fgfr2 are highly expressed in the perichondrium and periosteum of bone where tendon and ligament attachments can be found. However, the role of FGFR signaling in attachment development and maintenance in the limb remains unknown. In this study, we used transgenic mouse models for combinatorial knockout of Fgfr1 and/or Fgfr2 in tendon/ligament and attachment progenitors using ScxCre and measured eminence size and bone shape in the appendicular skeleton. Conditional deletion of both, but not individual, Fgfr1 and Fgfr2 in Scx progenitors led to enlarged eminences in the postnatal appendicular skeleton and smaller secondary ossification centers in long bones. In addition, Fgfr1/Fgfr2 double conditional knockout mice had more variation in the size of collagen fibrils in tendon, narrowed synovial joint spacing, and increased cell death at sites of ligament attachments, as well as decreased plasticity of mature bone compared to age-matched wildtype littermates. These findings identify a role for FGFR signaling in regulating growth and maintenance of tendon/ligament attachments and the size and shape of bony eminences.


Author(s):  
K E Jones ◽  
R J Brocklehurst ◽  
S E Pierce

Abstract Deciphering the biological function of rare or extinct species is key to understanding evolutionary patterns across the tree of life. While soft tissues are vital determinants of joint function, they are rarely available for study. Therefore, extracting functional signals from skeletons, which are more widely available via museum collections, has become a priority for the field of comparative biomechanics. While most work has focused on the limb skeleton, the axial skeleton plays a critical role in body support, respiration, and locomotion, and is therefore of central importance for understanding broad-scale functional evolution. Here, we describe and experimentally validate AutoBend, an automated approach to estimating intervertebral joint function from bony vertebral columns. AutoBend calculates osteological range of motion (oROM) by automatically manipulating digitally articulated vertebrae while incorporating multiple constraints on motion, including both bony intersection and the role of soft tissues by restricting excessive strain in both centrum and zygapophyseal articulations. Using AutoBend and biomechanical data from cadaveric experiments on cats and tegus, we validate important modeling parameters required for oROM estimation, including the degree of zygapophyseal disarticulation, and the location of the center of rotation. Based on our validation, we apply a model with the center of rotation located within the vertebral disc, no joint translation, around 50% strain permitted in both zygapophyses and discs, and a small amount of vertebral intersection permitted. Our approach successfully reconstructs magnitudes and craniocaudal patterns of motion obtained from ex vivo experiments, supporting its potential utility. It also performs better than more typical methods that rely solely on bony intersection, emphasizing the importance of accounting for soft tissues. We estimated the sensitivity of the analyses to vertebral model reconstruction by varying joint spacing, degree of overlap, and the impact of landmark placement. The effect of these factors was small relative to biological variation craniocaudally and between bending directions. Within, we also present a new approach for estimating joint stiffness directly from oROM and morphometric measurements that can successfully reconstruct the craniocaudal patterns, but not magnitudes, derived from experimental data. Together, this work represents a significant step forward for understanding vertebral function in difficult-to-study (e.g., rare or extinct) species, paving the way for a broader understanding of patterns of functional evolution in the axial skeleton.


Sign in / Sign up

Export Citation Format

Share Document