epicentral area
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 80)

H-INDEX

18
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Fabrizio Marra ◽  
Alberto Frepoli ◽  
Dario Gioia ◽  
Marcello Schiattarella ◽  
Andrea Tertulliani ◽  
...  

Abstract. Rome has the world’s longest historical record of felt earthquakes, with more than 100 events during the last 2,600 years. However, no destructive earthquake has been reported in the sources and all of the greatest damage suffered in the past has been attributed to far-field events. While this fact suggests that a moderate seismotectonic regime characterizes the Rome area, no study has provided a comprehensive explanation for the lack of strong earthquakes in the region. Through the analysis of the focal mechanism and the morphostructural setting of the epicentral area of a "typical" moderate earthquake (ML = 3.3) that recently occurred in the northern urban area of Rome, we demonstrate that this event reactivated a buried segment of an ancient fault generated under both a different and a stronger tectonic regime than that which is presently active. We also show that the evident structural control over the drainage network in this area reflects an extreme degree of fragmentation of a set of buried faults generated under two competing stress fields throughout the Pleistocene. Small faults and a present-day weaker tectonic regime with respect to that acting during the Pleistocene explain the lack of strong seismicity and imply that a large earthquake could not reasonably occur.


Author(s):  
Xiangfang Zeng ◽  
Feng Bao ◽  
Clifford H. Thurber ◽  
Rongbing Lin ◽  
Shuofan Wang ◽  
...  

Abstract Aftershock-monitoring networks deployed in the epicentral area of a damaging earthquake play important roles in earthquake early warning and ShakeMap estimation, which contribute to hazard mitigation. Using distributed acoustic sensing (DAS) technology with dark fiber can significantly reduce deployment time and cost, and improve spatial sampling, both of which help capture more aftershocks. In this study, we used a 7.6 km dark fiber in Tangshan, China, to monitor seismicity after the 12 July 2020 Ms 5.1 earthquake. The DAS array detected dozens of earthquakes missed by the local permanent network that doubled the number of aftershocks. The relocated aftershocks are distributed mainly north of the DAS array, and the ground-motion pattern changes also hint small-scale features. Our successful results demonstrate the feasibility of using DAS and dark fiber for rapid postearthquake response.


Author(s):  
S. Verbitsky ◽  
R. Pronishin ◽  
V. Prokopishin ◽  
A. Stets’kiv ◽  
M. Chuba ◽  
...  

The article describes seismic observations in the Carpathian region in 2015, which were carried out, as before, by two organizations from two states: in Ukraine – the Seismicity department of the Carpathian region of the Institute of Geophysics of the NAS of Ukraine, in Moldova – the Seismology laboratory of the Institute of Geology and Seismology of the Academy of Sciences of Moldova. 20 stationary digital stations with a processing center in L'viv and six stations with a center in Chisinau operated in Ukraine and Moldova respectively. Different programs, local hodographs and magnitudes were used. The consolidated catalogue of earthquakes was created in L'viv. The total number of earthquakes in 2015 was NΣ=164 in the ranges: KR=4.7–12.2, h=1–160 km. The total seismic energy ΣE=5.381012 J. 23 earthquakes with depths h=50–160 km were located in the Vrancea zone. The maximum earthquake with KR=12.2 was registered on January 24 in the Vrancha mountains with hрР=89 km. In the Precarpathian region, nine events with energy classes KR=4.7–8.9 were registered, the total seismic energy of which is ΣЕ=1.25109 J. Increased seismic activity was observed in Transcarpathia. A series of tangible earthquakes with aftershocks was recorded in the Tyachiv area. Their total number was NΣ=77. The strongest tangible earthquake occurred in the area of Okrugla village on July 19 with KR=11.1. The earthquake source is located in the Earth's crust at a depth of h=7.7 km. The earthquake was felt by the population in the epicentral area with an intensity of I=6. In addition, this earthquake, like 5 others, was felt in the territory of northern Romania. In general, a decrease in the seismicity level in the Carpathians in 2015 was observed compared to that in 2013 and 2014.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3111
Author(s):  
Pengtao Yang ◽  
Xiaolong Sun ◽  
Dongying Liu ◽  
Zhongtai He ◽  
Yongsheng Li

Groundwater is undoubtedly important for water security and eco-environmental protection, especially in areas that experience earthquakes. Analyzing the characteristics and variation of groundwater after an earthquake is significant to obtain a better understanding of the seismic risk and rational management of groundwater resources. This study investigated the hydrogeochemical characteristics of groundwater at the epicenter of the 2021 Biru M6.1 earthquake in central Tibet, southwest China, using 23 water samples. The results showed that: (1) the hydrochemical type, hydrogen and oxygen isotope ratios, and SiO2 concentrations of three hot spring water samples in the study area were significantly different from those of samples taken elsewhere, indicating that the hot spring water originates from deeper geothermal reservoirs and has undergone more distant migration and longer fractionation processes; (2) the geochemical characteristics of groundwater from some sampling sites in the epicentral area were apparently distinct from those of other shallow groundwater or surface water samples, suggesting that the groundwater environment in the epicentral area has been affected by the earthquake. Along with the macroscopic groundwater responses in the epicentral area after the earthquake, we investigated the influencing mechanisms of the earthquake on the regional groundwater environment. We conclude that a shorter distance from the epicenter to the seismogenic fault leads to a greater possibility of the generation of new fractures, which then induce macroscopic responses and chemical characteristic variations for groundwater.


2021 ◽  
Vol 58 ◽  
pp. 200
Author(s):  
Dimitrios Galanakis ◽  
Sotiris Sboras ◽  
Garyfalia Konstantopoulou ◽  
Markos Xenakis

On March 3, 2021, a strong (Mw6.3) earthquake occurred near the towns of Tyrnavos and Elassona. One day later (March 4), a second strong (Mw6.0) earthquake occurred just a few kilometres toward the WNW. The aftershock spatial distribution and the focal mechanisms revealed NW-SE-striking normal faulting. The focal mechanisms also revealed a NE-SW oriented extensional stress field, different from the orientation we knew so far (ca. N-S). The magnitude and location of the two strongest shocks, and the spatiotemporal evolution of the sequence, strongly suggest that two adjacent fault segments were ruptured respectively. The sequence was followed by several coseismic ground deformational phenomena, such as landslides/rockfalls, liquefaction and ruptures. The landslides and rockfalls were mostly associated with the ground shaking. The ruptures were observed west of the Titarissios River, near to the Quaternary faults found by bore-hole lignite investigation. In the same direction, a fault scarp separating the alpidic basement from the alluvial deposits of the Titarissios valley implies the occurrence of a well-developed fault system. Some of the ground ruptures were accompanied by extensive liquefaction phenomena. Others cross-cut reinforced concrete irrigation channels without changing their direction. We suggest that this fault system was partially reactivated, as a secondary surface rupture, during the sequence as a steeper splay of a deeper low-to-moderate angle normal fault.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Iunio Iervolino ◽  
Antonio Vitale ◽  
Pasquale Cito

AbstractDesign ground motion intensities determine the actions for which structures are checked, in the conventional approach of seismic codes, not to fail the target performances. On the other hand, due to inherent characteristics of probabilistic seismic hazard analysis (PSHA), it is expected that site-specific design intensity based on PSHA is exceeded in the epicentral area of moderate-to-high magnitude earthquakes. In the context of regional seismic loss assessment and of the evolution of seismic codes from the regulator perspective, it is useful to gather insights about the extent of the zone around the earthquake source where code-conforming structures are expected to be systematically exposed to seismic actions larger than those accounted for in design. To assess such areal extent based on empirical evidence is the scope of the study presented in the paper. To this aim, peak ground acceleration ShakeMap data for Italian earthquakes from 2008 to 2020 were compared to the current design intensities in the same areas for which the maps are available. This allowed, first, to develop simple semi-empirical models of the exceedance area versus the magnitude of the earthquakes. Second, it allowed to model the probability that an earthquake of given magnitude causes exceedance of the design intensity via logistic regressions. Coupling the first and second class of models provides an approximation of the expected exceedance (logarithmic) area upon occurrence of an earthquake of given magnitude. Such an area can be of several thousand square kilometers for earthquakes occurring relatively frequently in countries such as Italy.


Author(s):  
Arben Pitarka ◽  
Aybige Akinci ◽  
Pasquale De Gori ◽  
Mauro Buttinelli

ABSTRACT The Mw 6.5 Norcia, Italy, earthquake occurred on 30 October 2016 and caused extensive damage to buildings in the epicentral area. The earthquake was recorded by a network of strong-motion stations, including 14 stations located within a 5 km distance from the two causative faults. We used a numerical approach for generating seismic waves from two hybrid deterministic and stochastic kinematic fault rupture models propagating through a 3D Earth model derived from seismic tomography and local geology. The broadband simulations were performed in the 0–5 Hz frequency range using a physics-based deterministic approach modeling the earthquake rupture and elastic wave propagation. We used SW4, a finite-difference code that uses a conforming curvilinear mesh, designed to model surface topography with high numerical accuracy. The simulations reproduce the amplitude and duration of observed near-fault ground motions. Our results also suggest that due to the local fault-slip pattern and upward rupture directivity, the spatial pattern of the horizontal near-fault ground motion generated during the earthquake was complex and characterized by several local minima and maxima. Some of these local ground-motion maxima in the near-fault region were not observed because of the sparse station coverage. The simulated peak ground velocity (PGV) is higher than both the recorded PGV and predicted PGV based on empirical models for several areas located above the fault planes. Ground motions calculated with and without surface topography indicate that, on average, the local topography amplifies the ground-motion velocity by 30%. There is correlation between the PGV and local topography, with the PGV being higher at hilltops. In contrast, spatial variations of simulated PGA do not correlate with the surface topography. Simulated ground motions are important for seismic hazard and engineering assessments for areas that lack seismic station coverage and historical recordings from large damaging earthquakes.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 328
Author(s):  
Ioannis K. Koukouvelas ◽  
Konstantinos G. Nikolakopoulos ◽  
Aggeliki Kyriou ◽  
Riccardo Caputo ◽  
Alexandros Belesis ◽  
...  

On 3 March 2021, a strong shallow earthquake affected northern Thessaly, Greece, with an epicenter close to Damasi village causing significant destruction of many stone houses. In this contribution, we provide fieldwork observations, satellite radar interferometry, mapping of the active faults exposed in the epicentral area, liquefactions and coseismic surface ruptures, and preliminary geomorphological analyses of the epicentral area. The geomorphological analysis is based on air photographs, digital surface models analysis, Real-Time Kinematik (RTK) measurements with Global Navigation Satellite System (GNSS) receivers, and data from UAV flight campaigns. Although the seismotectonic setting of the area is complex and there is an apparent mismatch between field and interferometric data, the results of our investigations suggest that at least three fault segments were reactivated by the major shocks of the March seismic sequence. These tectonic structureslikely represent the westward propagation of the Tyrnavos Graben, where newly formed and inherited low-angle faults interplay in a complex manner.


Author(s):  
Sara Sgobba ◽  
Chiara Felicetta ◽  
Giovanni Lanzano ◽  
Fadel Ramadan ◽  
Maria D’Amico ◽  
...  

ABSTRACT We present an extended and updated version of the worldwide NEar-Source Strong-motion (NESS) flat file, which includes an increased number of moderate-to-strong earthquakes recorded in epicentral area, new source metadata and intensity measures, comprising spectral displacements and fling-step amplitudes retrieved from the extended baseline correction processing of velocity time series. The resulting dataset consists of 81 events with moment magnitude≥5.5 and hypocentral depth shallower than 40 km, corresponding to 1189 three-component waveforms, which are selected to have a maximum source-to-site distance within one fault length. Details on the flat files, metadata, and ground-motion parameters, processing scheme, and statistical findings are presented and discussed. The analysis of these data allows recognizing the presence of distinctive features (such as pulse-like waveforms, large vertical components, and hanging-wall effects) that can be exploited to assess their impact on near-source seismic motion. As an example, we use the NESS2.0 dataset for calibrating an empirical correction factor of a regional ground-motion model (GMM) mainly based on far-field records. In this way, we can adjust the median predictions to account for near-source effects not fully captured by the reference model. The final goal of this work is to promote the use of the NESS2 flat file as a tool to disseminate qualified and referenced near-source data and metadata in the light of improving the constraints of GMMs (both empirical and physics-based) close to the source.


2021 ◽  
Author(s):  
Anupama M. ◽  
Sunil P.S.

Abstract Heterogeneity of pre and post seismic stress states associated to any earthquake play a primary role in understanding the earthquake mechanism and hazard assessment of a seismically dynamic region. The Mw 7.8, November 14, 2016 Kaikoura, New Zealand earthquake offer an unprecedented possibility to observe the heterogeneity in stress field over a very complex fault system wherein subduction zone converges with the strike slip faults system. Here we report the pre and post seismic stress field asperity first time in terms of spatial and temporal variations of b-values associated to the Kaikoura main-shock. Pre seismic spatial disparity of b-value indicates the existence of two prominent low b-value clusters, one towards southwest closer to the epicenter and other to the north of the rupture zone. During co seismic period, owing to the stress release near the epicentral area, the pattern of prominent low b-value pattern has become negligible in the post seismic period. However, the pattern of low b-value in the north of the rupture zone remains similar in the post seismic period indicates the unreleased strain energy in the province. The temporal evaluation of the earthquakes frequency magnitude distributions over a period of two decades also showed an analogous pattern that the b-values were decreased considerably before the large earthquakes in the expanse, which could spawn a larger future earthquakes in the vicinity.


Sign in / Sign up

Export Citation Format

Share Document