organic precursor
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 52)

H-INDEX

25
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Zahilia Cabán Huertas ◽  
Daniel Settipani ◽  
Cristina Flox ◽  
Joan Ramon Morante ◽  
Tanja Kallio ◽  
...  

AbstractThis paper presents the electrochemical performance and characterization of nano Si electrodes coated with titanicone (TiGL) as an anode for Li ion batteries (LIBs). Atomic layer deposition (ALD) of the metal combined with the molecular layer deposition (MLD) of the organic precursor is used to prepare coated electrodes at different temperatures with improved performance compared to the uncoated Si electrode. Coated electrodes prepared at 150 °C deliver the highest capacity and best current response of 1800 mAh g−1 at 0.1 C and 150 mAh g−1 at 20 C. This represented a substantial improvement compared to the Si baseline which delivers a capacity of 1100 mAh g−1 at 0.1 C but fails to deliver capacity at 20 C. Moreover, the optimized coated electrode shows an outstanding capacity of 1200 mAh g−1 at 1 C for 350 cycles with a capacity retention of 93%. The improved discharge capacity, electrode efficiencies, rate capability and electrochemical stability for the Si-based electrode presented in this manuscript are directly correlated to the optimized TiGL coating layer deposited by the ALD/MLD processes, which enhances lithium kinetics and electronic conductivity as demonstrated by equivalent circuit analysis of low frequency impedance data and conductivity measurements. The coating strategy also stabilizes SEI film formation with better Coulombic efficiencies (CE) and improves long cycling stability by reducing capacity lost.


Author(s):  
Md. Belal ◽  
Santa Mondal ◽  
Sabina Yashmin ◽  
Abu Taleb Khan

4-hydroxydithiocoumarin is a valuable organic precursor to architect important heterocycles. The three different reactive nucleophilic sites at the 4-hydroxydithiocoumarins display intriguing regioselectivity in its reaction towards various electro-philes. Previously, 4-hydroxydithiocoumarins...


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3267
Author(s):  
Andrii Vasin ◽  
Dmytro Kysil ◽  
Andriy Rusavsky ◽  
Oksana Isaieva ◽  
Alexander Zaderko ◽  
...  

Luminescent carbon nanoparticles are a relatively new class of luminescent materials that have attracted the increasing interest of chemists, physicists, biologists and engineers. The present review has a particular focus on the synthesis and luminescent properties of carbon nanoparticles dispersed inside nanostructured silica of different natures: oxidized porous silicon, amorphous thin films, nanopowders, and nanoporous sol–gel-derived ceramics. The correlations of processing conditions with emission/excitation spectral properties, relaxation kinetics, and photoluminescence photodegradation behaviors are analyzed. Following the evolution of the photoluminescence (PL) through the “from-bottom-to-up” synthesis procedure, the transformation of molecular-like ultraviolet emission of organic precursor into visible emission of carbon nanoparticles is demonstrated. At the end of the review, a novel method for the synthesis of luminescent and transparent composites, in form of nanoporous silica filled with luminescent carbon nanodots, is presented. A prototype of white light emitting devices, constructed on the basis of such luminophores and violet light emitting diodes, is demonstrated.


Author(s):  
Mamta Devi ◽  
Sachin Rawat ◽  
Swati Sharma

Abstract Thermally induced chemical decomposition of organic materials in the absence of oxygen is defined as pyrolysis. This process has four major application areas: (i) production of carbon materials, (ii) fabrication of pre-patterned micro and nano carbon-based structures, (iii) fragmentation of complex organic molecules for analytical purposes and (iv) waste treatment. While the underlying process principles remain the same in all cases, the target products differ owing to the phase and composition of the organic precursor, heat-treatment temperature, influence of catalysts and the presence of post-pyrolysis steps during heat-treatment. Due to its fundamental nature, pyrolysis is often studied in the context of one particular application rather than as an independent operation. In this review article an effort is made to understand each aspect of pyrolysis in a comprehensive fashion, ensuring that all state-of-the-art applications are approached from the core process parameters that influence the ensuing product. Representative publications from recent years for each application are reviewed and analyzed. Some classical scientific findings that laid the foundation of the modern-day carbon material production methods are also revisited. In addition, classification of pyrolysis, its history and nomenclature and the plausible integration of different application areas are discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2833
Author(s):  
Cedrik Ngnintedem Yonti ◽  
Patrice Kenfack Tsobnang ◽  
Roussin Lontio Fomekong ◽  
Francois Devred ◽  
Eric Mignolet ◽  
...  

In this study, a bio-derived precipitating agent/ligand, palm kernel oil, has been used as an alternative route for the green synthesis of nanoparticles of Fe-doped Co3O4 via the co-precipitation reaction. The palm oil was extracted from dried palm kernel seeds by crushing, squeezing and filtration. The reaction of the palm kernel oil with potassium hydroxide, under reflux, yielded a solution containing a mixture of potassium carboxylate and excess hydroxide ions, irrespective of the length of saponification. The as-obtained solution reacts with an aqueous solution containing iron and cobalt ions to yield the desired metallo-organic precursor, iron cobalt carboxylate. Characterization of the precursors by IR and gas chromatography (GC) attests to the presence of carboxylate fatty acids in good agreement with the proportion contained in the oil, and ICP confirms that the metallic ratios are in the proportion used during the synthesis. Analysis of the products thermally decomposed between 400 °C and 600 °C by XRD, EDX, TEM and ToF-SIMS, established that cobalt iron oxide nanoparticles (Co(1−x)Fex)3O4 were obtained for x ≤ 0.2 and a nanocomposite material (Co(1−x)Fex)3O4/Fe3O4 for x ≥ 0.2, with sizes between 22 and 9 nm. ToF-SIMS and XRD provided direct evidence of the progressive substitution of cobalt by iron in the Co3O4 crystal structure for x ≤ 0.2.


2021 ◽  
Author(s):  
Zahilia Cabán Huertas ◽  
Daniel Settipani Ramirez ◽  
Cristina Flox ◽  
Joan Ramon Morante ◽  
Tanja Kallio ◽  
...  

Abstract This paper presents the electrochemical performance and characterization of nano Si electrodes coated with titanicone (TiGL) as an anode for Li-ion batteries. Atomic Layer Deposition (ALD) of the metal combined with the Molecular Layer Deposition (MLD) of the organic precursor is used to prepare coated electrodes at different temperatures with improved performance compared to the uncoated Si electrode. Coated electrodes prepared at 150° C delivers the highest capacity and best current response of 1800-1 mAhg-1 at 0.1 C and 150 mAhg-1 at 20 C. This represented a substantial improvement compared to the Si baseline which delivers a capacity of 1100 mAhg-1 at 0.1C but fails to deliver capacity at 20C. Moreover, the optimized coated electrode shows an outstanding capacity of 1200-1 at 1C for 350 cycles with a capacity decay of 93%. The improved discharge capacity, electrode efficiencies, rate capability and electrochemical stability for the Si-based electrode presented in this manuscript are directly correlated to the optimized TiGL coating layer deposited by the ALD/MLD processes, which enhances lithium kinetics as demonstrated by equivalent circuit analysis and low frequency data fitting. The coating strategy also stabilizes SEI film formation with better Coulombic efficiencies and improves long cycling stability by reducing capacity lost.


2021 ◽  
Vol 45 (1) ◽  
pp. 13-26
Author(s):  
Aparna Sarker ◽  
AKM Lutfor Rahman ◽  
Tapas Debnath ◽  
Altaf Hussain

Bi2Mn4O10 was synthesized from corresponding metal salts in glycerin by using an organic precursor-based glycerin nitrate method. The precursor was heated at various temperatures (300 – 800 °C) for about 18 hours to determine the lowest synthesis temperature for the formation of Bi2Mn4O10. The XRD patterns of the calcined samples revealed that the desired mullite type phase started to form at 600 °C, which became more crystalline with further increase of calcination temperature. Attempts were also taken to prepare chromium and cobalt incorporated solid solution series with nominal composition Bi2MxMn4-xO10 (M = Cr3+ and Co3+) by the same procedure. The XRD data of these series exhibited mullite type single phase up to x = 0.7 and 0.1 compositions for chromium and cobalt, respectively. For further insertion of M, an extra phase appeared along with the mullite type phase. J. Bangladesh Acad. Sci. 45(1); 13-26: June 2021


2021 ◽  
pp. 138899
Author(s):  
Williane da Silva Freitas ◽  
Alessandra D'Epifanio ◽  
Valerio C.A. Ficca ◽  
Ernesto Placidi ◽  
Fabrizio Arciprete ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3795
Author(s):  
Michael Haub ◽  
Martin Bogner ◽  
Thomas Guenther ◽  
André Zimmermann ◽  
Hermann Sandmaier

Most accelerometers today are based on the capacitive principle. However, further miniaturization for micro integration of those sensors leads to a poorer signal-to-noise ratio due to a small total area of the capacitor plates. Thus, other transducer principles should be taken into account to develop smaller sensors. This paper presents the development and realization of a miniaturized accelerometer based on the tunneling effect, whereas its highly sensitive effect regarding the tunneling distance is used to detect small deflections in the range of sub-nm. The spring-mass-system is manufactured by a surface micro-machining foundry process. The area of the shown polysilicon (PolySi) sensor structures has a size smaller than 100 µm × 50 µm (L × W). The tunneling electrodes are placed and patterned by a focused ion beam (FIB) and gas injection system (GIS) with MeCpPtMe3 as a precursor. A dual-beam system enables maximum flexibility for post-processing of the spring-mass-system and patterning of sharp tips with radii in the range of a few nm and initial distances between the electrodes of about 30–300 nm. The use of metal–organic precursor material platinum carbon (PtC) limits the tunneling currents to about 150 pA due to the high inherent resistance. The measuring range is set to 20 g. The sensitivity of the sensor signal, which depends exponentially on the electrode distance due to the tunneling effect, ranges from 0.4 pA/g at 0 g in the sensor operational point up to 20.9 pA/g at 20 g. The acceleration-equivalent thermal noise amplitude is calculated to be 2.4–3.4 mg/. Electrostatic actuators are used to lead the electrodes in distances where direct quantum tunneling occurs.


Sign in / Sign up

Export Citation Format

Share Document