fast calculation
Recently Published Documents


TOTAL DOCUMENTS

641
(FIVE YEARS 137)

H-INDEX

34
(FIVE YEARS 5)

MAUSAM ◽  
2021 ◽  
Vol 66 (3) ◽  
pp. 457-466
Author(s):  
NATHAN FAGGIAN ◽  
BELINDA ROUX ◽  
PETER STEINLE ◽  
BETH EBERT
Keyword(s):  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Baocong Sun

Abstract In order to consider many uncertain factors in the process of shot-put, a fuzzy optimisation model of shot-put is proposed. With the help of fuzzy anthropometric data and strength data, the model calculates the fuzzy solution set of the athlete's best throwing mode and throwing distance with a known probability distribution, which reflects the actual process of shot throwing better than the non-fuzzy optimisation model. Then, using MATLAB6 software, the program design of the model solving and the user interface of optimisation software are developed, which realises fast calculation and good user interaction function. Finally, the actual measurement data of university shot-putters are used to verify the feasibility and effectiveness of the fuzzy optimisation model.


2021 ◽  
Author(s):  
Yan Qiao ◽  
Yang Zhang ◽  
Tianhong Jiang ◽  
Guobin Zhang ◽  
Qing Chen ◽  
...  

Abstract During hydraulic fracturing process of the Permian Basin in North America, the cluster spacing has been shortened to 3m, and stress shadow can no longer be ignored. Many scholars have studied the influence of stress shadows to optimize cluster spacing. For reservoirs with natural fractures, how to activate more natural fractures through hydraulic fracturing has become the purpose. However, few scholars have studied changes in the activation law of natural fractures under stress shadow conditions. This paper establishes stress change value around single fracture according to Sneddon formula, and calculates the maximum and minimum principal stress according to plane principal stress calculation formula. Considering attenuation of net pressure, stress field of multiple fractures is established, and influence of various factors on stress re-orientation is studied. Finally, considering attenuation of net pressure with distance, according to discriminant formulas of tension & shear activation, the proportion of natural fractures that are easily activated is calculated. By designing orthogonal experiments, the influence of different factors on the proportion of activated natural fractures was studied. The stress increase in the direction of the minimum principal stress is much greater than the increase in the direction of the maximum principal stress. The stress increases in the direction of the maximum principal stress at the tip of the hydraulic fracture. The tip position between hydraulic fractures is "neutralized" due to the superposition of shear stress. Stress-fracture angle and the in-situ stress difference are the common main influencing factors for both tensile and shear activation, but the net pressure has little effect on the tensile activation of natural fracture. The fracture spacing has little effect on the activation of natural fractures. When formulating the fracturing scheme, we should pay more attention to the net pressure rather than the fracture spacing. This article provides a fast calculation method for the activation state of natural fractures considering the stress shadow, which provides a reference index for activating more natural fractures and increasing the production of a single well.


2021 ◽  
Vol 104 (10) ◽  
Author(s):  
Ken Osato ◽  
Takahiro Nishimichi ◽  
Atsushi Taruya ◽  
Francis Bernardeau

2021 ◽  
Vol 2125 (1) ◽  
pp. 012006
Author(s):  
Nan Wu ◽  
Chengpo Mu ◽  
Yang He ◽  
Huan Liu ◽  
Taiye Liu

Abstract In order to study the infrared radiation (IR) characteristics of rocket engine plume in the mid infrared band, a calculation model for IR transfer of rocket engine plume was built. The flow field data are calculated by software FLUENT. Based on HITRAN database, the IR characteristic parameters are calculated after spectral line correction. The Line of Sight (LoS) is used to solve the radiation characteristics in the plume flow field, and the IR characteristics distribution of the plume in the mid infrared band is obtained, which agree well with the results from open literature. The method has the advantages of simple model, less parameters and fast calculation speed in this paper.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Pin-Jiao Zhao ◽  
Guo-Bing Hu ◽  
Li-Wei Wang

This paper presents a sliding window data compression method for spatial-time direction-of-arrival (DOA) estimation using coprime array. The signal model is firstly formulated by jointly using the temporal and spatial information of the impinging sources. Then, a sliding window data compression processing is performed on the array output matrix to realize fast calculation of time average function, and the computational burden has been reduced accordingly. Based on the concept of sum and difference co-array (SDCA), the vectorized conjugate augmented MUSIC is adopted, with which more sources than twice of the physical sensors can be resolved. Additionally, the sparse array robustness to sensor failure has been evaluated by introducing the concept of essential sensors. The theoretical analysis and numerical simulations are provided to confirm the effectiveness performance of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Sicheng Zhang ◽  
Yun Lin ◽  
Zhida Bao ◽  
Jiangzhi Fu

Improving the attack resistance of the modulation classification model is an important means to improve the security of the physical layer of the Internet of Things (IoT). In this paper, a binary modulation classification defense network (BMCDN) was proposed, which has the advantages of small model scale and strong immunity to white box gradient attacks. Specifically, an end-to-end modulation signal recognition network that directly recognizes the form of the signal sequence is constructed, and its parameters are quantized to 1 bit to obtain the advantages of low memory usage and fast calculation speed. The gradient of the quantized parameter is directly transferred to the original parameter to realize the gradient concealment and achieve the effect of effectively defending against the white box gradient attack. Experimental results show that BMCDN obtains significant immune performance against white box gradient attacks while achieving a scale reduction of 6 times.


Author(s):  
I. Prots’ko ◽  
N. Kryvinska ◽  
O. Gryshchuk

Context. Providing the problem of fast calculation of the modular exponentiation requires the development of effective algorithmic methods using the latest information technologies. Fast computations of the modular exponentiation are extremely necessary for efficient computations in theoretical-numerical transforms, for provide high crypto capability of information data and in many other applications. Objective – the runtime analysis of software functions for computation of modular exponentiation of the developed programs based on parallel organization of computation with using multithreading. Method. Modular exponentiation is implemented using a 2k-ary sliding window algorithm, where k is chosen according to the size of the exponent. Parallelization of computation consists in using the calculation of the remainders of numbers raised to the power of 2i modulo, and their further parallel multiplications modulo. Results. Comparison of the runtimes of three variants of functions for computing the modular exponentiation is performed. In the algorithm of parallel organization of computation with using multithreading provide faster computation of modular exponentiation for exponent values larger than 1K binary digits compared to the function of modular exponentiation of the MPIR library. The MPIR library with an integer data type with the number of binary digits from 256 to 2048 bits is used to develop an algorithm for computing the modular exponentiation with using multithreading. Conclusions. In the work has been considered and analysed the developed software implementation of the computation of modular exponentiation on universal computer systems. One of the ways to implement the speedup of computing modular exponentiation is developing algorithms that can use multithreading technology on multi-cores microprocessors. The multithreading software implementation of modular exponentiation with increasing from 1024 the number of binary digit of exponent shows an improvement of computation time with comparison with the function of modular exponentiation of the MPIR library.


Sign in / Sign up

Export Citation Format

Share Document