reaction cycles
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 65)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Patrick Schwarz ◽  
Marta Tena-Solsona ◽  
Kun Dai ◽  
Job Boekhoven

Using molecular self-assembly, supramolecular chemists can create Gigadalton-structures with angstrom precision held together by non-covalent interactions. However, despite relying on the same molecular toolbox for self-assembly, these synthetic structures lack...


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1417
Author(s):  
Oleg Kikhtyanin ◽  
Jaroslav Aubrecht ◽  
Violetta Pospelova ◽  
David Kubička

CuZn catalysts are perspective catalysts for esters hydrogenolysis, but more knowledge is needed to optimize their catalytic performance. In this work, we consider the impact of CuZn catalysts composition on their structure, activity, selectivity, and stability in esters hydrogenolysis. Four catalysts with various Cu/Zn ratio were synthesized by a co-precipitation and characterized in as-prepared, calcined, reduced, and spent state by XRF, XRD, N2 physisorption, CO2-TPD, NH3-TPD, and N2O chemisorption. XRD data revealed the effect of the composition on the size of Cu and ZnO particles. The catalytic performance was investigated using an autoclave. All catalysts exhibited high methyl hexanoate conversion about 48–60% after 3 h but their activity and selectivity were found to be dependent on Cu/Zn ratio. The conversion of methyl hexanoate and hexyl hexanoate was compared to explain the observed product selectivity. Moreover, the catalysts stability was investigated in three consecutive reaction cycles and correlated with changes in the size of constituent particles. Moreover, when different esters were tested, a slight decrease in conversion and increase in alcohol selectivity with a growth in molecule size was observed. Obtained results allow making a conclusion about the optimal composition that provides the good performance of CuZn catalysts in ester hydrogenolysis.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1787
Author(s):  
Sandip M. Deshmukh ◽  
Sudhir S. Arbuj ◽  
Santosh B. Babar ◽  
Shoyebmohamad F. Shaikh ◽  
Asiya M. Tamboli ◽  
...  

In this work, we developed a very simple and novel approach for synthesizing TiO2-ZnO nanocomposites via the urea-assisted thermal decomposition of titanium oxysulphate and zinc acetate at different weight ratios. The synthesized nanocomposite samples were studied by means of HR-TEM, XRD, STEM, UV–Vis DRS, PL and EDS. The observed results demonstrate that the TiO2-ZnO nanocomposite consists of an anatase crystal phase of TiO2 with a crystallite size of 10–15 nm. Combined characterization, including UV–Vis DRS, STEM, EDS and HR-TEM, revealed the successful formation of a heterojunction between TiO2 and ZnO and an improvement in UV spectrum absorption. The photocatalytic activity was explored using MO degradation under ultraviolet light illumination. The results of the optimized TiO2-ZnO nanocomposite show excellent photocatalytic activity and photostability over a number of degradation reaction cycles. In addition, the current approach has immense potential to be used as a proficient method for synthesizing mixed metal oxide nanocomposites.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1273
Author(s):  
Md. Afroz Bakht ◽  
Mshari. Alotaibi ◽  
Abdulrahman I. Alharthi ◽  
Israf Ud Din ◽  
Abuzer Ali ◽  
...  

A Palladium-doped silica-supported heteropoly acid (HPW) (1%Pd-HPW/SiO2) bi-functional catalyst was produced using ultrasonic and conventional procedures. Both forms of catalyst were characterized with distinct analytical approaches in order to access the advantages of each one. The presence of the required functional groups in the catalyst was confirmed using FT-IR. The crystallinity of ultrasonically generated 1%Pd-HPW/SiO2 was confirmed with XRD. The existence of necessary elements in the catalyst was also suggested by XPS and EDX data. BET was used to calculate the surface area of the ultrasonically synthesized catalyst (395 m2 g−1), and it was found to be greater than that of the non-ultrasonic synthesized catalyst (382 m2 g−1). The N2 adsorption-desorption isotherm indicated mesoporous structures. The SEM morphology at a similar magnification exhibited quite different shapes. In comparison to traditional methods, ultrasonic approaches produce higher yields in less time and use less energy. Furthermore, the effect of the preparation method of the 1%Pd-HPW/SiO2 catalyst was extensively studied with respect to the synthesis of octahydroquinazolinones. Excellent product yields, a fast reaction time, and simple work-up methods are some peculiarities associated with the ultrasonically synthesized catalyst. The recycling study was also investigated and found suitable for up to four reaction cycles.


2021 ◽  
Author(s):  
Amjad Ali ◽  
Km Abida ◽  
Ritika Jindal

Abstract To facilitate the magnetic separation, phosphate group is embedded onto silica-coated Fe3O4 magnetic nanoparticles to prepare Fe3O4@SiO2@PO43− solid catalyst for the glycerol esterification with acetic acid. The catalyst was characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating magnetic spectroscopy (VSM) and Fourier Transform Infrared (FTIR) spectroscopy. The Fe3O4@SiO2@PO43− magnetic catalyst during the glycerol esterification with acetic acid was found to demonstrate excellent glycerol conversion levels (97 %) while retaining 92 % triacetin selectivity. The plausible mechanism of glycerol esterification suggests the initiation of the reaction by the protonation of the acetic acid. The catalyst was recovered from the reaction mixture under the influence of external magnetic field and reused during 4 consecutive reaction cycles.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1236
Author(s):  
Bruno R. Facin ◽  
Ernestina G. Quinto ◽  
Alexsandra Valerio ◽  
Débora de Oliveira ◽  
Jose V. Oliveira ◽  
...  

Eversa® Transform 2.0 lipase (ET2) is a recent lipase formulation derived from the Thermomyces lanuginosus lipase cultivated on Aspergillus oryzae and specially designed for biodiesel production. Since it has not been available for a long time, research on the efficiency of this enzyme in other applications remains unexplored. Moreover, even though it has been launched as a free enzyme, its immobilization may extend the scope of ET2 applications. This work explored ET2 immobilization on octadecyl methacrylate beads (IB-ADS-3) and proved the efficiency of the derivatives for esterification of glycerophosphocholine (GPC) with oleic acid in anhydrous systems. ET2 immobilized via interfacial activation on commercial hydrophobic support Immobead IB-ADS-3 showed maximum enzyme loading of 160 mg/g (enzyme/support) and great stability for GPC esterification under 30% butanone and solvent-free systems. For reusability, yields above 63% were achieved after six reaction cycles for GPC esterification. Considering the very high enzyme loading and the number of reuses achieved, these results suggest a potential application of this immobilized biocatalyst for esterification reactions in anhydrous media. This study is expected to encourage the exploration of other approaches for this enzyme, thereby opening up several new possibilities.


Author(s):  
Shuntaro Amano ◽  
Stefan Borsley ◽  
David A. Leigh ◽  
Zhanhu Sun
Keyword(s):  

2021 ◽  
Vol 5 (4) ◽  
pp. 67
Author(s):  
Pathik Sahoo ◽  
Subrata Ghosh

In the coming years, multipurpose catalysts for delivering different products under the same chemical condition will be required for developing smart devices for industrial or household use. In order to design such multipurpose devices with two or more specific roles, we need to incorporate a few independent but externally controllable catalytically active centers. Through space crystal engineering, such an externally controllable multipurpose MOF-based photocatalyst could be designed. In a chemical system, a few mutually independent secondary reaction cycles nested within the principal reaction cycle can be activated externally to yield different competitive products. Each reaction cycle can be converted into a time crystal, where the time consuming each reaction step could be converted as an event and all the reaction steps or events could be connected by a circle to build a time crystal. For fractal reaction cycles, a time polycrystal can be generated. By activating a certain fractal event based nested time crystal branch, we can select one of the desired competitive products according to our needs. This viewpoint intends to bring together the ideas of (spatial) crystal engineering and time crystal engineering in order to make use of the time–space arrangement in reaction–catalysis systems and introduce new aspects to futuristic chemical engineering technology.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stephan Reichl ◽  
Eric Mädl ◽  
Felix Riedlberger ◽  
Martin Piesch ◽  
Gábor Balázs ◽  
...  

AbstractThe synthesis of phosphines is based on white phosphorus, which is usually converted to PCl3, to be afterwards substituted step by step in a non-atomic efficient manner. Herein, we describe an alternative efficient transition metal-mediated process to form asymmetrically substituted phosphines directly from white phosphorus (P4). Thereby, P4 is converted to [Cp*Fe(η5-P5)] (1) (Cp* = η5-C5(CH3)5) in which one of the phosphorus atoms is selectively functionalized to the 1,1-diorgano-substituted complex [Cp*Fe(η4-P5R′R″)] (3). In a subsequent step, the phosphine PR′R″R‴ (R′ ≠ R″ ≠ R‴ = alky, aryl) (4) is released by reacting it with a nucleophile R‴M (M = alkali metal) as racemates. The starting material 1 can be regenerated with P4 and can be reused in multiple reaction cycles without isolation of the intermediates, and only the phosphine is distilled off.


2021 ◽  
Vol 18 (10) ◽  
pp. 1239-1246 ◽  
Author(s):  
Tamara Heermann ◽  
Frederik Steiert ◽  
Beatrice Ramm ◽  
Nikolas Hundt ◽  
Petra Schwille

AbstractIn spite of their great importance in biology, methods providing access to spontaneous molecular interactions with and on biological membranes have been sparse. The recent advent of mass photometry to quantify mass distributions of unlabeled biomolecules landing on surfaces raised hopes that this approach could be transferred to membranes. Here, by introducing a new interferometric scattering (iSCAT) image processing and analysis strategy adapted to diffusing particles, we enable mass-sensitive particle tracking (MSPT) of single unlabeled biomolecules on a supported lipid bilayer. We applied this approach to the highly nonlinear reaction cycles underlying MinDE protein self-organization. MSPT allowed us to determine the stoichiometry and turnover of individual membrane-bound MinD/MinDE protein complexes and to quantify their size-dependent diffusion. This study demonstrates the potential of MSPT to enhance our quantitative understanding of membrane-associated biological systems.


Sign in / Sign up

Export Citation Format

Share Document