single virus tracking
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Bo Tang ◽  
En-Ze Sun ◽  
Zhi-Ling Zhang ◽  
Shu-Lin Liu ◽  
Jia Liu ◽  
...  

Influenza A virus (IAV) is a global health threat. The cellular endocytic machineries harnessed by IAV remain elusive. Here, by tracking single IAV particles and quantifying the internalized IAV, we found that the sphingomyelin (SM)-sequestered cholesterol, but not the accessible cholesterol, is essential for the clathrin-mediated endocytosis (CME) of IAV. The clathrin-independent endocytosis of IAV is cholesterol-independent. Whereas, the CME of transferrin depends on SM-sequestered cholesterol and accessible cholesterol. Furthermore, three-color single-virus tracking and electron microscopy showed that the SM-cholesterol complex nanodomain is recruited to the IAV-containing clathrin-coated structure (CCS) and facilitates neck constriction of the IAV-containing CCS. Meanwhile, formin-binding protein 17 (FBP17), a membrane-bending protein which activates actin nucleation, is recruited to IAV-CCS complex in a manner dependent on the SM-cholesterol complex. We propose that the SM-cholesterol nanodomain at the neck of CCS recruits FBP17 to induce neck constriction by activating actin assembly. These results unequivocally show the physiological importance of the SM-cholesterol complex in IAV entry. Importance: IAV infects the cells by harnessing cellular endocytic machineries. Better understanding of the cellular machineries used for its entry might lead to the development of antiviral strategies, and would also provide important insights into physiological endocytic processes. This work demonstrated that a special pool of cholesterol in plasma membrane, SM-sequestered cholesterol, recruits FBP17 for the constriction of clathrin-coated pits in IAV entry. Meanwhile, the clathrin-independent cell entry of IAV is cholesterol-independent. The internalization of transferrin, the gold-standard cargo endocytosed solely via CME, is much less dependent on the SM-cholesterol complex. These results would provide new insights into IAV infection and pathway/cargo-specific involvement of cholesterol pool(s).


2021 ◽  
Author(s):  
Courtney C Johnson ◽  
Jack Exell ◽  
Yuxin Lin ◽  
Jonathan Aguilar ◽  
Kevin Welsher

The early stages of the virus-cell interaction have long evaded observation by existing microscopy methods due to the rapid diffusion of virions in the extracellular space and the large 3D cellular structures involved. Here we present an active-feedback single-virus tracking method with simultaneous volumetric imaging of the live cell environment to address this knowledge gap to present unprecedented detail to the extracellular phase of the infectious cycle. We report previously unobserved phenomena in the early stages of the virus-cell interaction, including skimming contact events at the millisecond timescale, orders of magnitude change in diffusion coefficient upon binding, and cylindrical and linear diffusion modes along filopodia. Finally, we demonstrate how this new method can move single-virus tracking from simple monolayer culture towards more tissue-like conditions by tracking single virions in tightly packed epithelial cells. This multi-resolution method presents new opportunities for capturing fast, 3D processes in biological systems.


Nano Today ◽  
2021 ◽  
Vol 40 ◽  
pp. 101271
Author(s):  
Hao-Yang Liu ◽  
Zhi-Gang Wang ◽  
Yusi Hu ◽  
Xue-Hui Shi ◽  
Hua-Jie Chen ◽  
...  

2021 ◽  
Vol 95 (10) ◽  
Author(s):  
Wei Li ◽  
Ji Liu ◽  
Yuanyuan Liu ◽  
Qin Li ◽  
Wen Yin ◽  
...  

ABSTRACT Macrophages are one of the major targets of human immunodeficiency virus 1 (HIV-1) and play crucial roles in viral dissemination and persistence during AIDS progression. Here, we reveal the dynamic podosome-mediated entry of HIV-1 into macrophages. Inhibition of podosomes prevented HIV-1 entry into macrophages, while stimulation of podosome formation promoted viral entry. Single-virus tracking revealed the temporal and spatial mechanism of the dynamic podosome-mediated viral entry process. The core and ring structures of podosomes played complex roles in viral entry. The HIV coreceptor CCR5 was recruited to form specific clusters at the podosome ring, where it participated in viral entry. The podosome facilitated HIV-1 entry with a rotation mode triggered by dynamic actin. Our discovery of this novel HIV-1 entry route into macrophages, mediated by podosomes critical for cell migration and tissue infiltration, provides a new view of HIV infection and pathogenesis, which may assist in the development of new antiviral strategies. IMPORTANCE Macrophages are motile leukocytes and play critical roles in HIV-1 infection and AIDS progression. Podosomes, as small dynamic adhesion microdomains driven by the dynamic actin cytoskeleton, are mainly involved in cell migration of macrophages. Herein, we found that HIV-1 uses dynamic podosomes to facilitate its entry into macrophages. Single-virus imaging coupled with drug assays revealed the mechanism underlying the podosome-mediated route of HIV-1 entry into macrophages, including the dynamic relationship between the viral particles and the podosome core and ring structures, the CCR5 coreceptor. The dynamic podosome-mediated entry of HIV-1 into macrophages will be very significant for HIV-1 pathogenesis, especially for viral dissemination via macrophage migration and tissue infiltration. Thus, we report a novel HIV-1 entry route into macrophages mediated by podosomes, which extends our understanding of HIV infection and pathogenesis.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Li-Juan Zhang ◽  
Shaobo Wang ◽  
Li Xia ◽  
Cheng Lv ◽  
Hong-Wu Tang ◽  
...  

ABSTRACT Quantum dots (QDs) possess optical properties of superbright fluorescence, excellent photostability, narrow emission spectra, and optional colors. Labeled with QDs, single molecules/viruses can be rapidly and continuously imaged for a long time, providing more detailed information than when labeled with other fluorophores. While they are widely used to label proteins in single-molecule-tracking studies, QDs have rarely been used to study virus infection, mainly due to a lack of accepted labeling strategies. Here, we report a general method to mildly and readily label enveloped viruses with QDs. Lipid-biotin conjugates were used to recognize and mark viral lipid membranes, and streptavidin-QD conjugates were used to light them up. Such a method allowed enveloped viruses to be labeled in 2 h with specificity and efficiency up to 99% and 98%, respectively. The intact morphology and the native infectivity of viruses were preserved. With the aid of this QD labeling method, we lit wild-type and mutant Japanese encephalitis viruses up, tracked their infection in living Vero cells, and found that H144A and Q258A substitutions in the envelope protein did not affect the virus intracellular trafficking. The lipid-specific QD labeling method described in this study provides a handy and practical tool to readily “see” the viruses and follow their infection, facilitating the widespread use of single-virus tracking and the uncovering of complex infection mechanisms. IMPORTANCE Virus infection in host cells is a complex process comprising a large number of dynamic molecular events. Single-virus tracking is a versatile technique to study these events. To perform this technique, viruses must be fluorescently labeled to be visible to fluorescence microscopes. The quantum dot is a kind of fluorescent tag that has many unique optical properties. It has been widely used to label proteins in single-molecule-tracking studies but rarely used to study virus infection, mainly due to the lack of an accepted labeling method. In this study, we developed a lipid-specific method to readily, mildly, specifically, and efficiently label enveloped viruses with quantum dots by recognizing viral envelope lipids with lipid-biotin conjugates and recognizing these lipid-biotin conjugates with streptavidin-quantum dot conjugates. It is not only applicable to normal viruses, but also competent to label the key protein-mutated viruses and the inactivated highly virulent viruses, providing a powerful tool for single-virus tracking.


Nano Letters ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 2931-2931
Author(s):  
Yong-Bo Yang ◽  
Yan-Dong Tang ◽  
Yue Hu ◽  
Fang Yu ◽  
Jun-Yao Xiong ◽  
...  

2020 ◽  
Vol 2 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Cong Jin ◽  
Bin Che ◽  
Zhengyuan Guo ◽  
Chuan Li ◽  
Yang Liu ◽  
...  

2020 ◽  
Vol 120 (3) ◽  
pp. 1936-1979 ◽  
Author(s):  
Shu-Lin Liu ◽  
Zhi-Gang Wang ◽  
Hai-Yan Xie ◽  
An-An Liu ◽  
Don C. Lamb ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document