neutral difference equations
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 22)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 71 (4) ◽  
pp. 941-960
Author(s):  
Ajit Kumar Bhuyan ◽  
Laxmi Narayan Padhy ◽  
Radhanath Rath

Abstract In this article, sufficient conditions are obtained so that every solution of the neutral difference equation Δ m ( y n − p n L ( y n − s ) ) + q n G ( y n − k ) = 0 , $$\begin{equation*}\Delta^{m}\big(y_n-p_n L(y_{n-s})\big) + q_nG(y_{n-k})=0, \end{equation*}$$ or every unbounded solution of Δ m ( y n − p n L ( y n − s ) ) + q n G ( y n − k ) − u n H ( y α ( n ) ) = 0 , n ≥ n 0 , $$\begin{equation*}\Delta^{m}\big(y_n-p_n L(y_{n-s})\big) + q_nG(y_{n-k})-u_nH(y_{\alpha(n)})=0,\quad n\geq n_0, \end{equation*}$$ oscillates, where m=2 is any integer, Δ is the forward difference operator given by Δy n = y n+1 − y n ; Δ m y n = Δ(Δ m−1 y n ) and other parameters have their usual meaning. The non linear function L ∈ C (ℝ, ℝ) inside the operator Δ m includes the case L(x) = x. Different types of super linear and sub linear conditions are imposed on G to prevent the solution approaching zero or ±∞. Further, all the three possible cases, p n ≥ 0, p n ≤ 0 and p n changing sign, are considered. The results of this paper generalize and extend some known results.


2021 ◽  
Vol 1831 (1) ◽  
pp. 012001
Author(s):  
S Sindhuja ◽  
J Daphy Louis Lovenia ◽  
A P Lavanya ◽  
D Darling Jemima ◽  
G Jayabarathy

2021 ◽  
Vol 28 (1-2) ◽  
pp. 19-30
Author(s):  
G. CHATZARAKIS G. CHATZARAKIS ◽  
R. KANAGASABAPATHI R. KANAGASABAPATHI ◽  
S. SELVARANGAM S. SELVARANGAM ◽  
E. THANDAPANI E. THANDAPANI

In this paper we shall consider a class of second-order nonlinear difference equations with a negative neutral term. Some new oscillation criteria are obtained via Riccati transformation technique. These criteria improve and modify the existing results mentioned in the literature. Some examples are given to show the applicability and significance of the main results.


2021 ◽  
Vol 22 (2) ◽  
pp. 991
Author(s):  
Radhakrishnan Srinivasan ◽  
Chinnappa Dharuman ◽  
John R. Graef ◽  
E. Thandapani

Author(s):  
G. Ayyappan ◽  
G.E. Chatzarakis ◽  
T. Gopal ◽  
E. Thandapani

In this paper, we present some new oscillation criteria for nonlinear neutral difference equations of the form ?(b(n)?(a(n)?z(n))) + q(n)x?(?(n)) = 0 where z(n) = x(n) + p(n)x(?(n)),? > 0, b(n) > 0, a(n) > 0, q(n) ? 0 and p(n) > 1. By summation averaging technique, we establish new criteria for the oscillation of all solutions of the studied difference equation above. We present four examples to show the strength of the new obtained results.


Author(s):  
Chittaranjan Behera ◽  
Radhanath Rath ◽  
Prayag Prasad Mishra

This article, is concerned with finding sufficient conditions for the oscillation and non oscillation of the solutions of a second order neutral difference equation with multiple delays under the forward difference operator, which generalize and extend some existing results.This could be possible by extending an important lemma from the literature.


Sign in / Sign up

Export Citation Format

Share Document