inversion theorem
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Mawardi Bahri

AbstractThe windowed linear canonical transform is a natural extension of the classical windowed Fourier transform using the linear canonical transform. In the current work, we first remind the reader about the relation between the windowed linear canonical transform and windowed Fourier transform. It is shown that useful relation enables us to provide different proofs of some properties of the windowed linear canonical transform, such as the orthogonality relation, inversion theorem, and complex conjugation. Lastly, we demonstrate some new results concerning several generalizations of the uncertainty principles associated with this transformation.


2021 ◽  
pp. 213-234
Author(s):  
James Davidson

This chapter begins with a look at convolutions and the distribution of sums of random variables. It briefly surveys complex number theory before defining the characteristic function and studying its properties, with a range of examples. The concept of infinite divisibility is introduced. The important inversion theorem is treated and finally consideration is given to characteristic functions in conditional distributions.


2021 ◽  
pp. 593-610
Author(s):  
James Davidson

This chapter lays the foundations for functional limit theory, considering the case of general metric spaces from a topological standpoint. The issues of separability and measurability and techniques for assigning measures in metric spaces are then discussed, developing tools to replace the methods of characteristic functions and the inversion theorem used for real sequences. The key cases of function spaces are studied and in particular the case C of continuous functions on the unit interval. Weiner measure (Brownian motion) is defined as the leading case of a measure on C.


Author(s):  
Ahmed Amine Lamri ◽  
Said M Easa

Abstract Computationally efficient solutions (less computation time) for the Colebrook equation are important for the simulation of pipeline networks. However, the friction law resistance formula has an implicit form with respect to the friction factor. In the present study, computationally efficient accurate explicit solution for the friction head loss in pipeline networks is developed using the Lagrange inversion theorem. The results are in the form of fast converging power series. Truncated and regressed expressions are obtained using two and three terms of the expanded series that have maximum relative errors of 0.149% and 0.040%, respectively. The proposed solution is as computationally efficient as existing analytic solutions but provides a better accuracy in estimating the friction head loss.


2021 ◽  
Vol 13 (10) ◽  
pp. 1916
Author(s):  
Chuang Li ◽  
Heng Zhang ◽  
Yunkai Deng

In this paper, a modified azimuth nonlinear chirp scaling (NLCS) algorithm is derived for high-squint bistatic synthetic aperture radar (BiSAR) imaging to solve its inherent difficult issues, including the large range cell migration (RCM), azimuth-dependent Doppler parameters, and the sensibility of the higher order terms. First, using the Lagrange inversion theorem, an accurate spectrum suitable for processing airborne high-squint BiSAR data is introduced. Different from the spectrum that is based on the method of series reversion (MSR), it is allowed to derive the bistatic stationary phase point while retaining the double square root (DSR) of the slant range history. Based the spectrum, a linear RCM correction is used to remove the most of the linear RCM components and mitigate the range-azimuth coupling, and, then, bulk secondary range compression is implemented to compensate the residual RCM and cross-coupling terms. Following this, a modified azimuth NLCS operation is applied to eliminate the azimuth-dependence of Doppler parameters and equalize the azimuth frequency modulation for azimuth compression. The experimental results, with better focusing performance, prove the high accuracy and effectiveness of the proposed algorithm.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hillal Ayas ◽  
Lyes Amara ◽  
Mohamed Chabaat

PurposeIn this paper, an approximate analytical approach is developed for the determination of natural longitudinal frequencies of a cantilever-cracked beam based on the Lagrange inversion theorem.Design/methodology/approachThe crack is modeled by an equivalent axial spring with stiffness according to Castigliano's theorem. Thus, an implicit frequency equation corresponding to cantilever-cracked bar is obtained. The resulting equation is solved using the Lagrange inversion theorem.Findingseffect of different crack depths and crack positions on natural frequencies of the cracked beam is analyzed. It is shown that an increase in the crack depth ratio produces a decrease in the fundamental longitudinal natural frequency of a cracked bar. Furthermore, approximate analytical results are compared with those obtained numerically as well as from experimental tests.Originality/valueA new approximate analytical expression of a fundamental longitudinal frequency, as a function of crack depth and crack location, is obtained.


2020 ◽  
Vol 27 (1) ◽  
pp. 149-156
Author(s):  
Rajakumar Roopkumar

AbstractFirst, we correct the mistake in the inversion theorem of the ripplet transform in the literature. Next, we prove a convolution theorem for the ripplet transform and extend the ripplet transform as a continuous, linear, injective mapping from a suitable Boehmian space into another Boehmian space.


2019 ◽  
Vol 27 (3) ◽  
pp. 177-194
Author(s):  
Bartłomiej Kluczyński

AbstractUsing a global inversion theorem we investigate properties of the following operator\matrix{\matrix{ V(x)( \cdot ): = {x^\Delta }( \cdot ) + \int_0^ \cdot {v\left( { \cdot ,\tau ,x,\left( \tau \right)} \right)} \Delta \tau , \hfill \cr \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x(0) = 0, \hfill \cr}\cr {} \cr }in a time scale setting. Under some assumptions on the nonlinear term v we then show that there exists exactly one solution {x_y} \in W_{\Delta ,0}^{1,p}\left( {{{[0,1]}_\mathbb{T}},{\mathbb{R}^N}} \right) to the associated integral equation\left\{ {\matrix{{{x^\Delta }(t) + \int_0^t {v\left( {t,\tau ,x\left( \tau \right)} \right)} \Delta \tau = y(t)\,\,\,for\,\Delta - a.e.\,\,\,t \in {{[0.1]}_\mathbb{T}},} \cr {x(0) = 0,} \cr } } \right.which is considered on a suitable Sobolev space.


2019 ◽  
Vol 11 (16) ◽  
pp. 1874 ◽  
Author(s):  
Xing Chen ◽  
Tianzhu Yi ◽  
Feng He ◽  
Zhihua He ◽  
Zhen Dong

The high-resolution low frequency synthetic aperture radar (SAR) has serious range-azimuth phase coupling due to the large bandwidth and long integration time. High-resolution SAR processing methods are necessary for focusing the raw data of such radar. The generalized chirp scaling algorithm (GCSA) is generally accepted as an attractive solution to focus SAR systems with low frequency, large bandwidth and wide beam bandwidth. However, as the bandwidth and/or beamwidth increase, the serious phase coupling limits the performance of the current GCSA and degrades the imaging quality. The degradation is mainly caused by two reasons: the residual high-order coupling phase and the non-negligible error introduced by the linear approximation of stationary phase point using the principle of stationary phase (POSP). According to the characteristics of a high-resolution low frequency SAR signal, this paper firstly presents a principle to determine the required order of range frequency. After compensating for the range-independent coupling phase above 3rd order, an improved GCSA based on Lagrange inversion theorem is analytically derived. The Lagrange inversion enables the high-order range-dependent coupling phase to be accurately compensated. Imaging results of P- and L-band SAR data demonstrate the excellent performance of the proposed algorithm compared to the existing GCSA. The image quality and focusing depth in range dimension are greatly improved. The improved method provides the possibility to efficiently process high-resolution low frequency SAR data with wide swath.


Sign in / Sign up

Export Citation Format

Share Document