range cell migration
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 23)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 14 (2) ◽  
pp. 368
Author(s):  
Yanan Guo ◽  
Pengbo Wang ◽  
Jie Chen ◽  
Zhirong Men ◽  
Lei Cui ◽  
...  

High-Resolution Wide-Swath (HRWS) is an important development direction of space-borne Synthetic Aperture Radar (SAR). The two-dimensional spatial variation of the Doppler parameters is the most significant characteristic of the sliding spotlight space-borne SAR system under the requirements of HRWS. Therefore, the compensation of the two-dimensional spatial variation is the most challenging problem faced in the imaging of HRWS situations. The compensatory approach is then proposed to address this problem in this paper. The spatial distribution of the Doppler parameters for the HRWS space-borne SAR data in the sliding spotlight working mode is firstly analyzed, based on which a Spatial-Variant Equivalent Slant Range Model (SV-ESRM) is put forward to accurately formulate the range history for the distributed target. By introducing an azimuth-varying term, the SV-ESRM can precisely describe the range history for not only central targets but also marginal targets, which is more adaptive to the HRWS space-borne SAR requirements. Based on the SV-ESRM, a Modified Hybrid Correlation Algorithm (MHCA) for HRWS space-borne SAR imaging is derived to focus the full-scene data on one single imaging processing. A Doppler phase perturbation incorporated with the sub-aperture method is firstly performed to eliminate the azimuth variation of the Doppler parameters and remove the Doppler spectrum aliasing. Then, an advanced hybrid correlation is employed to achieve the precise differential Range Cell Migration (RCM) correction and Doppler phase compensation. A range phase perturbation method is also utilized to eliminate the range profile defocusing caused by range-azimuth coupling for marginal targets. Finally, a de-rotation processing is performed to remove the azimuth aliasing and the residual azimuth-variance and obtain the precisely focused SAR image. Simulation shows that the SAR echoes for a 20 km × 20 km scene with a 0.25 m resolution in both the range and azimuth directions could be focused precisely via one single imaging processing, which validates the feasibility of the proposed algorithm.


2021 ◽  
Vol 2083 (3) ◽  
pp. 032048
Author(s):  
Tao He ◽  
Pengbo Wang ◽  
Jixiang Ma ◽  
Xinkai Zhou ◽  
Lingling Xue

Abstract The hyperbolic range equation model (HREM) and equivalent squint range model (ESRM) are applied in traditional chirp scaling algorithm (CSA). However, these range models cannot describe the satellite range history in the high-resolution case accurately because of the long azimuth integration time. The non-negligible phase error caused by this will lead the targets distort. In this paper, a modified chirp scaling algorithm (MCSA) is proposed by introducing a novel high-precision range model. A more accurate signal spectrum is calculated through it. Then, the modified chirp scaling factor, range compression filter, range cell migration correction (RCMC) filter and azimuth compression filter can be derived based on this signal spectrum, and the focused target obtained at last. Finally, the experimental results, to validate the proposed algorithm, adopted by the sliding spotlight synthetic aperture radar (SAR) simulation are provided.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2133
Author(s):  
Yeongung Choi ◽  
Dongmin Jeong ◽  
Myeongjin Lee ◽  
Wookyung Lee ◽  
Yunho Jung

In this paper, we propose a range-Doppler algorithm (RDA)-based synthetic aperture radar (SAR) processor for real-time SAR imaging and present FPGA-based implementation results. The processing steps for the RDA include range compression, range cell migration correction (RCMC), and azimuth compression. A matched filtering unit (MFU) and an RCMC processing unit (RPU) are required for real-time processing. Therefore, the proposed RDA-based SAR processor contains an MFU that uses the mixed-radix multi-path delay commutator (MRMDC) FFT and an RPU. The MFU reduces the memory requirements by applying a decimation-in-frequency (DIF) FFT and decimation-in-time (DIT) IFFT. The RPU provides a variable tap size and variable interpolation kernel. In addition, the MFU and RPU are designed to enable parallel processing of four 32-bit which are transferred via a 128-bit AXI bus. The proposed RDA-based SAR processor was designed using Verilog-HDL and implemented in a Xilinx UltraScale+ MPSoC FPGA device. After comparing the execution time taken by the proposed SAR processor with that taken by an ARM cortex-A53 microprocessor, we observed a 85-fold speedup for a 2048 × 2048 pixel image. A performance evaluation based on related studies indicated that the proposed processor achieved an execution time that was approximately 6.5 times less than those of previous FPGA implementations of RDA processors.


2021 ◽  
Vol 13 (16) ◽  
pp. 3329
Author(s):  
Bowen Bie ◽  
Yinghui Quan ◽  
Kaijie Xu ◽  
Guangcai Sun ◽  
Mengdao Xing

This paper proposes an imaging algorithm for synthetic aperture radar (SAR) mounted on a high-speed maneuvering platform with squint terrain observation by progressive scan mode. To overcome the mismatch between range model and the signal after range walk correction, the range history is calculated in local polar format. The Doppler ambiguity is resolved by nonlinear derotation and zero-padding. The recovered signal is divided into several blocks in Doppler according to the angular division. Keystone transform is used to remove the space-variant range cell migration (RCM) components. Thus, the residual RCM terms can be compensated by a unified phase function. Frequency domain perturbation terms are introduced to correct the space-variant Doppler chirp rate term. The focusing parameters are calculated according to the scene center of each angular block and the signal of each block can be processed in parallel. The image of each block is focused in range-Doppler domain. After the geometric correction, the final focused image can be obtained by directly combined the images of all angular blocks. Simulated SAR data has verified the effectiveness of the proposed algorithm.


2021 ◽  
Vol 13 (14) ◽  
pp. 2729
Author(s):  
Zhen Chen ◽  
Zhimin Zhang ◽  
Yashi Zhou ◽  
Pei Wang ◽  
Jinsong Qiu

Due to the atmospheric turbulence, the motion trajectory of airborne very high resolution (VHR) synthetic aperture radars (SARs) is inevitably affected, which introduces range-variant range cell migration (RCM) and aperture-dependent azimuth phase error (APE). Both types of errors consequently result in defocused images, as residual range- and aperture-dependent motion errors are significant in VHR-SAR images. Nevertheless, little work has been devoted to the range-variant RCM auto-correction and aperture-dependent APE auto-correction. In this paper, a precise motion compensation (MoCo) scheme for airborne VHR-SAR is studied. In the proposed scheme, the motion error is obtained from inertial measurement unit and SAR data, and compensated for with respect to both range and aperture. The proposed MoCo scheme compensates for the motion error without space-invariant approximation. Simulations and experimental data from an airborne 3.6 GHz bandwidth SAR are employed to demonstrate the validity and effectiveness of the proposed MoCo scheme.


2021 ◽  
Vol 13 (11) ◽  
pp. 2051
Author(s):  
Jiusheng Han ◽  
Yunhe Cao ◽  
Tat-Soon Yeo ◽  
Fengfei Wang

This paper investigates a robust clutter suppression and detection of ground moving target (GMT) imaging method for a multichannel synthetic aperture radar (MC-SAR) with high-squint angle mounted on hypersonic vehicle (HSV). A modified coarse-focused method with cubic chirp Fourier transform (CFT) is explored first that permits the coarsely focused imageries to be recovered, thus alleviated the impacts of GMT Doppler ambiguity and range cell migration (RCM). After that, in combination with joint-pixel model, a robust clutter suppression method which enhances the GMT integration, and improving the accuracy of radial speed (RS) recovery by modifying the matching between the beamformer center and GMT, is proposed. Due to that the first-order phase compensation and RS retrieval are predigested, the proposed algorithm has lower the algorithmic complexity. Finally, the feasibility of our proposed method are verified via experimental results based on simulated and real measured data.


2021 ◽  
Vol 13 (10) ◽  
pp. 1948
Author(s):  
Langxu Zhao ◽  
Haihong Tao ◽  
Weijia Chen ◽  
Dawei Song

Range cell migration and Doppler frequency migration induced by the target maneuverability are two difficulties of target signal enhancement and radar detection performance. In order to resolve them, a novel subaperture joint coherent integration (SJCI) algorithm is proposed in this article, which consists of three stages. Firstly, it divides the target signal into several subapertures, in which the Doppler frequency dispersions can be neglected. Afterward, coherent integration within each subaperture is implemented via scaled Fourier transform. Finally, correcting the Doppler frequency shifts and phase differences via axis rotation and phase compensation technology, the joint coherent integration among the subapertures can be achieved effectively. Based on the SJCI algorithm, an upgrade algorithm named subspace SJCI (SSJCI) is presented. Through acceleration space division and subspace translation, the SSJCI algorithm extends the subaperture time and optimizes the computation complexity significantly. Theoretical analyses and performance comparisons demonstrate that the SSJCI algorithm can accomplish a good trade-off among signal-to-noise ratio gain, detection capability, resolution, and computation complexity. In addition, the results of the numerical experiments further verify the effectiveness of the proposed algorithm.


2021 ◽  
Vol 13 (10) ◽  
pp. 1916
Author(s):  
Chuang Li ◽  
Heng Zhang ◽  
Yunkai Deng

In this paper, a modified azimuth nonlinear chirp scaling (NLCS) algorithm is derived for high-squint bistatic synthetic aperture radar (BiSAR) imaging to solve its inherent difficult issues, including the large range cell migration (RCM), azimuth-dependent Doppler parameters, and the sensibility of the higher order terms. First, using the Lagrange inversion theorem, an accurate spectrum suitable for processing airborne high-squint BiSAR data is introduced. Different from the spectrum that is based on the method of series reversion (MSR), it is allowed to derive the bistatic stationary phase point while retaining the double square root (DSR) of the slant range history. Based the spectrum, a linear RCM correction is used to remove the most of the linear RCM components and mitigate the range-azimuth coupling, and, then, bulk secondary range compression is implemented to compensate the residual RCM and cross-coupling terms. Following this, a modified azimuth NLCS operation is applied to eliminate the azimuth-dependence of Doppler parameters and equalize the azimuth frequency modulation for azimuth compression. The experimental results, with better focusing performance, prove the high accuracy and effectiveness of the proposed algorithm.


Author(s):  
A. A. Monakov

Introduction.  Range Cell Migration (RCM) is a source of image blurring in synthetic aperture radars (SAR). There are two groups of signal processing algorithms used to compensate for migration effects. The first group includes algorithms that recalculate the SAR signal from the "along–track range – slant range" coordinate system into the "along-track range  –  cross-track range"  coordinates using the method of interpolation. The disadvantage of these algorithms is their considerable computational cost. Algorithms of the second group do not rely on interpolation thus being more attractive in terms of practical application.Aim. To synthesize a simple algorithm for compensating for RCM without using interpolation.Materials and methods. The synthesis was performed using a simplified version of the Chirp Scaling algorithm.Results.  A simple algorithm, which presents a modification of the Keystone Transform algorithm, was synthesized. The synthesized algorithm based on Fast Fourier Transforms and the Hadamard matrix products does not require interpolation.Conclusion. A verification of the algorithm quality via mathematical simulation confirmed its high efficiency. Implementation of the algorithm permits the number of computational operations to be reduced. The final radar image  produced using the proposed algorithm is built in the true Cartesian coordinates. The algorithm can be applied for SAR imaging of moving targets. The conducted analysis showed that the algorithm yields  the  image of a moving target provided that the coherent processing interval is sufficiently large. The image lies along a line, which angle of inclination is proportional to the projection of the target relative velocity on the line-of-sight. Estimation of the image parameters permits the target movement parameters to be determined.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2444
Author(s):  
Liping Hu ◽  
Guanyong Wang ◽  
Lin Hou

The coupling between range and azimuth dimensions is the main obstacle for highly squinted synthetic aperture radar (SAR) data focusing. Range walk correction (RWC) processing is effective to remove the linear coupling term, but the residual high order range cell migration (RCM) parts are spatial-variant in both range and azimuth dimensions. In this paper, we propose a precise spatial-variant range cell migration correction (RCMC) method with subaperture processing. The method contains two stages. Firstly, the main component of range-variant RCM is corrected in the coarse RCMC stage. Secondly, data are derived into azimuth subapertures (SAs), an SA-image-domain RCMC is developed by interp correction, where the SA image is obtained using a modified spectrum analysis (SPECAN) algorithm by establishing the relationship between Doppler frequency and residual spatial-variant RCM. In the proposed algorithm, precise compensation of space-variant RCM is implemented by SA processing, which is designed for a better practicality in real-time processing system. Simulated and real measured data experiments are designed to validate the effectiveness of the proposed approach for highly squinted SAR imaging.


Sign in / Sign up

Export Citation Format

Share Document