minimax rate
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Kohtaro Hitomi ◽  
Masamune Iwasawa ◽  
Yoshihiko Nishiyama

Abstract This study investigates optimal minimax rates for specification testing when the alternative hypothesis is built on a set of non-smooth functions. The set consists of bounded functions that are not necessarily differentiable with no smoothness constraints imposed on their derivatives. In the instrumental variable regression set up with an unknown error variance structure, we find that the optimal minimax rate is n−1/4, where n is the sample size. The rate is achieved by a simple test based on the difference between non-parametric and parametric variance estimators. Simulation studies illustrate that the test has reasonable power against various non-smooth alternatives. The empirical application to Engel curves specification emphasizes the good applicability of the test.


Author(s):  
Clément Berenfeld ◽  
John Harvey ◽  
Marc Hoffmann ◽  
Krishnan Shankar

AbstractThe reach of a submanifold is a crucial regularity parameter for manifold learning and geometric inference from point clouds. This paper relates the reach of a submanifold to its convexity defect function. Using the stability properties of convexity defect functions, along with some new bounds and the recent submanifold estimator of Aamari and Levrard (Ann. Statist. 47(1), 177–204 (2019)), an estimator for the reach is given. A uniform expected loss bound over a $${\mathscr {C}}^k$$ C k model is found. Lower bounds for the minimax rate for estimating the reach over these models are also provided. The estimator almost achieves these rates in the $${\mathscr {C}}^3$$ C 3 and $${\mathscr {C}}^4$$ C 4 cases, with a gap given by a logarithmic factor.


2021 ◽  
pp. 1-37
Author(s):  
Florian F. Gunsilius

The theory of optimal transportation has experienced a sharp increase in interest in many areas of economic research such as optimal matching theory and econometric identification. A particularly valuable tool, due to its convenient representation as the gradient of a convex function, has been the Brenier map: the matching obtained as the optimizer of the Monge–Kantorovich optimal transportation problem with the euclidean distance as the cost function. Despite its popularity, the statistical properties of the Brenier map have yet to be fully established, which impedes its practical use for estimation and inference. This article takes a first step in this direction by deriving a convergence rate for the simple plug-in estimator of the potential of the Brenier map via the semi-dual Monge–Kantorovich problem. Relying on classical results for the convergence of smoothed empirical processes, it is shown that this plug-in estimator converges in standard deviation to its population counterpart under the minimax rate of convergence of kernel density estimators if one of the probability measures satisfies the Poincaré inequality. Under a normalization of the potential, the result extends to convergence in the $L^2$ norm, while the Poincaré inequality is automatically satisfied. The main mathematical contribution of this article is an analysis of the second variation of the semi-dual Monge–Kantorovich problem, which is of independent interest.


2020 ◽  
Vol 9 (4) ◽  
pp. 961-986 ◽  
Author(s):  
Miguel del Álamo ◽  
Axel Munk

Abstract Even though the statistical theory of linear inverse problems is a well-studied topic, certain relevant cases remain open. Among these is the estimation of functions of bounded variation ($BV$), meaning $L^1$ functions on a $d$-dimensional domain whose weak first derivatives are finite Radon measures. The estimation of $BV$ functions is relevant in many applications, since it involves minimal smoothness assumptions and gives simplified, interpretable cartoonized reconstructions. In this paper, we propose a novel technique for estimating $BV$ functions in an inverse problem setting and provide theoretical guaranties by showing that the proposed estimator is minimax optimal up to logarithms with respect to the $L^q$-risk, for any $q\in [1,\infty )$. This is to the best of our knowledge the first convergence result for $BV$ functions in inverse problems in dimension $d\geq 2$, and it extends the results of Donoho (1995, Appl. Comput. Harmon. Anal., 2, 101–126) in $d=1$. Furthermore, our analysis unravels a novel regime for large $q$ in which the minimax rate is slower than $n^{-1/(d+2\beta +2)}$, where $\beta$ is the degree of ill-posedness: our analysis shows that this slower rate arises from the low smoothness of $BV$ functions. The proposed estimator combines variational regularization techniques with the wavelet-vaguelette decomposition of operators.


2019 ◽  
Vol 80 (10) ◽  
pp. 1817-1834
Author(s):  
A. Carpentier ◽  
O. Collier ◽  
L. Comminges ◽  
A. B. Tsybakov ◽  
Yu. Wang

Biometrika ◽  
2018 ◽  
Vol 106 (1) ◽  
pp. 87-107
Author(s):  
Asad Haris ◽  
Ali Shojaie ◽  
Noah Simon

SUMMARY We consider the problem of nonparametric regression with a potentially large number of covariates. We propose a convex, penalized estimation framework that is particularly well suited to high-dimensional sparse additive models and combines the appealing features of finite basis representation and smoothing penalties. In the case of additive models, a finite basis representation provides a parsimonious representation for fitted functions but is not adaptive when component functions possess different levels of complexity. In contrast, a smoothing spline-type penalty on the component functions is adaptive but does not provide a parsimonious representation. Our proposal simultaneously achieves parsimony and adaptivity in a computationally efficient way. We demonstrate these properties through empirical studies and show that our estimator converges at the minimax rate for functions within a hierarchical class. We further establish minimax rates for a large class of sparse additive models. We also develop an efficient algorithm that scales similarly to the lasso with the number of covariates and sample size.


Sign in / Sign up

Export Citation Format

Share Document