extinction strain rate
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
Jon Runyon ◽  
Daniel Pugh ◽  
Anthony Giles ◽  
Burak Goktepe ◽  
Philip Bowen ◽  
...  

Abstract A study has been undertaken to experimentally and numerically evaluate the use of carbon dioxide or steam as premixed fuel additive in hydrogen-air flames to aid in the development of lean premixed (LPM) swirl burner technology for low NOx operation. Chemical kinetics modelling indicates that the use of CO2 or steam in the premixed reactants reduces H2-air laminar flame speed and adiabatic flame temperature within the well-characterized range of preheated LPM methane-air flames, albeit in markedly different proportions; for example, nearly 65 %vol CO2 as a proportion of the fuel is required for a reduction in laminar flame speed to equivalent CH4-air values, while approximately 30 %vol CO2 in the fuel is required for an equivalent reduction in adiabatic flame temperature, significantly impacted by the increased heat capacity of CO2. The 2nd generation high-pressure generic swirl burner, designed for use with LPM CH4-air, was therefore utilized to experimentally investigate the influence of CO2 and steam dilution on pressurized (up to 250 kW/MPa), preheated (up to 573 K), LPM H2-air flame stability using high-speed OH* chemiluminescence. In addition, exhaust gas emissions, such as NOx and CO, have been measured in comparison with equivalent thermal power conditions for CH4-air flames, showing that low NOx operation can be achieved. Furthermore, pure LPM H2-air flames are characterized for the first time in this burner, stabilized at low equivalence ratio (approximately 0.24) and increased Reynolds number at atmospheric pressure compared to the stable CH4-air flame (equivalence ratio of 0.55). The influence of extinction strain rate is suggested to characterize, both experimentally and numerically, the observed lean flame behavior, in particular as extinction strain rate has been shown to be non-monotonic with pressure for highly-reactive and diffuse fuels such as hydrogen.


2019 ◽  
Vol 37 (2) ◽  
pp. 1979-1987 ◽  
Author(s):  
Alan E. Long ◽  
Hugo Burbano ◽  
Raymond L. Speth ◽  
Ashkan Movaghar ◽  
Fokion N. Egolfopoulos ◽  
...  

Author(s):  
Hirotatsu Watanabe ◽  
Santosh J. Shanbhogue ◽  
Ahmed F. Ghoniem

Premixed CH4/O2/CO2 flames (oxy-flames) and CH4/air flames (air-flames) were experimentally studied in a swirl-stabilized combustor. For comparing oxy and air flames, the same equivalence ratio and adiabatic flame temperature were used. CO2 dilution was adjusted to attain the same adiabatic temperature for the oxy-flame and the corresponding air-flame while keeping the equivalence ratio and Reynolds number (=20,000) the same. For high equivalence ratios, we observed flames stabilized along the inner and outer shear layers of the swirling flow and sudden expansion, respectively, in both flames. However, one notable difference between the two flames appears as the equivalence ratio reaches 0.60. At this point, the outer shear layer flame disappears in the air-flame while it persists in the oxy-flame, despite the lower burning velocity of the oxy-flame. Prior PIV measurements (Ref. 9) showed that the strains along the outer shear layer are higher than along the inner shear layer. Therefore, the extinction strain rates in both flames were calculated using a counter-flow premixed twin flame configuration. Calculations at the equivalence ratio of 0.60 show that the extinction strain rate is higher in the oxy than in the air flame, which help explain why it persists on the outer shear layer with higher strain rate. It is likely that extinction strain rates contribute to the oxy-flame stabilization when air flame extinguish in the outer shear layer. However, the trend reverses at higher equivalence ratio, and the cross point of the extinction strain rate appears at equivalence ratio of 0.64.


Author(s):  
Venkata Nori ◽  
Fang Xu

An investigation was conducted within Honeywell to assess the speed, accuracy, and robustness of DARS for performing basic combustion calculations. In this study, the results for the fundamental combustion characteristics from DARS are compared with those obtained by CHEMKIN, the most well known and widely used software for combustion chemistry calculations. These characteristics include the adiabatic flame temperature, flame speed, ignition delay and extinction strain rate. The operating conditions (pressure and temperature) are chosen that are relevant to aircraft gas turbine combustors. For the ignition delay studies, Jet-A is used whereas Methane is the fuel for the other simulations. Well validated reaction mechanisms for Jet-A and Methane are used for the study. Temperature and species values (profiles) are presented and compared between DARS and CHEMKIN, wherever applicable. In general, very good agreement has been found between the results of DARS and CHEMKIN. The features provided by both tools with an emphasis on gas turbine combustion application were assessed. In conclusion, it was found that DARS has equivalent accuracy and capability as CHEMKIN for this type of application.


Author(s):  
Qingguo Zhang ◽  
Santosh J. Shanbhogue ◽  
Tim Lieuwen

Swirling flows are widely used in industrial burners and gas turbine combustors for flame stabilization. Several prior studies have shown that these flames exhibit complex dynamics under near blowoff conditions, associated with local flamelet extinction and alteration in the vortex breakdown flow structure. These extinction events are apparently due to the local strain rate irregularly oscillating above and below the extinction strain rate values near the attachment point. In this work, global temporally resolved and detailed spatial measurements were obtained of hydrogen/methane flames. Supporting calculations of extinction strain rates were also performed using detailed kinetics. It is shown that flames become unsteady (or local extinctions happen) at a nearly constant extinction strain rate for different hydrogen/methane mixtures. Based upon analysis of these results, it is suggested that classic Damköhler number correlations of blowoff are, in fact, correlations for the onset of local extinction events, not blowoff itself. Corresponding Mie scattering imaging of near blowoff flames also was used to characterize the spatio-temporal dynamics of holes along the flame that are associated with local extinction.


Author(s):  
Qingguo Zhang ◽  
Santosh J. Shanbhogue ◽  
Tim Lieuwen

Swirling flows are widely used in industrial burners and gas turbine combustors for flame stabilization. Several prior studies have shown that these flames exhibit complex dynamics under near-blowoff conditions, associated with local flamelet extinction and alteration in the vortex breakdown flow structure. These extinction events are apparently due to the local strain rate irregularly oscillating above and below the extinction strain rate values near the attachment point. In this work, global, temporally resolved and detailed spatial measurements were obtained of hydrogen/methane flames. Supporting calculations of extinction strain rates were also performed using detailed kinetics. It is shown that flames become unsteady (or local extinctions happen) at a nearly constant extinction strain rate for different hydrogen/methane mixtures. Based upon analysis of these results, it is suggested that classic Damkohler number correlations of blowoff are, in fact, correlations for the onset of local-extinction events, not blowoff itself. Corresponding Mie scattering imaging of near-blowoff flames also was used to characterize the spatio-temporal dynamics of holes along the flame that are associated with local extinction.


Sign in / Sign up

Export Citation Format

Share Document