recombination signal
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 13)

H-INDEX

40
(FIVE YEARS 1)

2022 ◽  
Vol 12 ◽  
Author(s):  
Chunhong Di ◽  
Guoxia Zheng ◽  
Yunheng Zhang ◽  
Enyu Tong ◽  
Yanli Ren ◽  
...  

The recombination signal binding protein for immunoglobulin kappa J region (RBPJ) has a dual effect on Kaposi’s sarcoma-associated herpesvirus (KSHV) replication. RBPJ interaction with replication and transcription activator (RTA) is essential for lytic replication, while the interaction with latency-associated nuclear antigen (LANA) facilitates latent infection. Furthermore, our previous study found that LANA decreased RBPJ through upregulating miRNA let-7a. However, it is unclear whether RTA regulates the expression of RBPJ. Here, we show RTA increases RBPJ by decreasing let-7a. During KSHV replication, the RBPJ expression level was positively correlated with the RTA expression level and negatively correlated with the LANA expression level. The let-7a expression level was inverse to RBPJ. Knockdown of RBPJ inhibited the self-activation of RTA promoter and LANA promoter and weakened LANA’s inhibition of RTA promoter. Collectively, these findings indicate that RTA and LANA compete for let-7a/RBPJ signal to control the KSHV replication. Regulating the RBPJ expression level by RTA and LANA plays an important role during KSHV replication.


2021 ◽  
Author(s):  
Walker Hoolehan ◽  
Justin C. Harris ◽  
Jennifer N. Byrum ◽  
Karla K. Rodgers

ABSTRACTIn the adaptive immune system, V(D)J recombination initiates the production of a diverse antigen receptor repertoire in developing B and T cells. Recombination activating proteins, RAG1 and RAG2 (RAG1/2), catalyze V(D)J recombination by cleaving adjacent to recombination signal sequences (RSSs) that flank antigen receptor gene segments. Previous studies defined the consensus RSS as containing conserved heptamer and nonamer sequences separated by a less conserved 12 or 23 base-pair spacer sequence. However, many RSSs deviate from the consensus sequence. Here, we developed a cell-based, massively parallel V(D)J recombination assay to evaluate RAG1/2 activity on thousands of RSSs. We focused our study on the RSS heptamer and adjoining spacer region, as this region undergoes extensive conformational changes during RAG-mediated DNA cleavage. While the consensus heptamer sequence (CACAGTG) was marginally preferred, RAG1/2 was highly active on a wide range of non-consensus sequences. RAG1/2 generally preferred select purine/pyrimidine motifs that may accommodate heptamer unwinding in the RAG1/2 active site. Our results suggest RAG1/2 specificity for RSS heptamers is primarily dictated by DNA structural features dependent on purine/pyrimidine pattern, and to a lesser extent, RAG:RSS base-specific interactions. Further investigation of RAG1/2 specificity using this new approach will help elucidate the genetic instructions guiding V(D)J recombination.Summary StatementPartially conserved recombination signal sequences (RSSs) govern antigen receptor gene assembly during V(D)J recombination. Here, a massively parallel analysis of randomized RSSs reveals key attributes that allow DNA sequence diversity in the RAG1/2 active site and that contribute to the differential utilization of RSSs in endogenous V(D)J recombination. Overall, these results will assist identification of RAG1/2 off-target sites, which can drive leukemia cell transformation, as well as characterization of bona fide RSSs used to generate antigen receptor diversity.


2020 ◽  
Vol 11 ◽  
Author(s):  
Bin Shi ◽  
Xiaoheng Dong ◽  
Qingqing Ma ◽  
Suhong Sun ◽  
Long Ma ◽  
...  

The formation of the B cell receptor (BCR) heavy chain variable region is derived from the germline V(D)J gene rearrangement according to the “12/23” rule and the “beyond 12/23” rule. The usage frequency of each V(D)J gene in the peripheral BCR repertoires is related to the initial recombination, self-tolerance selection, and the clonal proliferative response. However, their specific differences and possible mechanisms are still unknown. We analyzed in-frame and out-of-frame BCR-H repertoires from human samples with normal physiological and various pathological conditions by high-throughput sequencing. Our results showed that IGHJ gene frequency follows a similar pattern which is previously known, where IGHJ4 is used at high frequency (>40%), IGHJ6/IGHJ3/IGHJ5 is used at medium frequencies (10∼20%), and IGH2/IGHJ1 is used at low frequency (<4%) under whether normal physiological or various pathological conditions. However, our analysis of the recombination signal sequences suggested that the conserved non-amer and heptamer and certain 23 bp spacer length may affect the initial IGHD-IGHJ recombination, which results in different frequencies of IGHJ genes among the initial BCR-H repertoire. Based on this “initial repertoire,” we recommend that re-evaluation and further investigation are needed when analyzing the significance and mechanism of IGHJ gene frequency in self-tolerance selection and the clonal proliferative response.


2020 ◽  
Vol 217 (9) ◽  
Author(s):  
Michael S. Krangel

In this issue of JEM, Wu et al. (https://doi.org/10.1084/jem.20200412) provide new insights into allelic exclusion. They demonstrate that Vβ-to-DβJβ rearrangement occurs stochastically on two competing Tcrb alleles, with suboptimal Vβ recombination signal sequences limiting synchronous rearrangements and essential for allelic exclusion.


2020 ◽  
Vol 48 (12) ◽  
pp. 6726-6739 ◽  
Author(s):  
Soichi Hirokawa ◽  
Griffin Chure ◽  
Nathan M Belliveau ◽  
Geoffrey A Lovely ◽  
Michael Anaya ◽  
...  

Abstract Developing lymphocytes of jawed vertebrates cleave and combine distinct gene segments to assemble antigen–receptor genes. This process called V(D)J recombination that involves the RAG recombinase binding and cutting recombination signal sequences (RSSs) composed of conserved heptamer and nonamer sequences flanking less well-conserved 12- or 23-bp spacers. Little quantitative information is known about the contributions of individual RSS positions over the course of the RAG–RSS interaction. We employ a single-molecule method known as tethered particle motion to track the formation, lifetime and cleavage of individual RAG–12RSS–23RSS paired complexes (PCs) for numerous synthetic and endogenous 12RSSs. We reveal that single-bp changes, including in the 12RSS spacer, can significantly and selectively alter PC formation or the probability of RAG-mediated cleavage in the PC. We find that some rarely used endogenous gene segments can be mapped directly to poor RAG binding on their adjacent 12RSSs. Finally, we find that while abrogating RSS nicking with Ca2+ leads to substantially shorter PC lifetimes, analysis of the complete lifetime distributions of any 12RSS even on this reduced system reveals that the process of exiting the PC involves unidentified molecular details whose involvement in RAG–RSS dynamics are crucial to quantitatively capture kinetics in V(D)J recombination.


Author(s):  
Indu Khatri ◽  
Magdalena A. Berkowska ◽  
Erik B. van den Akker ◽  
Cristina Teodosio ◽  
Marcel J.T. Reinders ◽  
...  

AbstractAt the population level, immunoglobulin (IG) loci harbor inter-individual allelic variants in the many different germline IG variable (V), Diversity (D) and Joining (J) genes of the IG heavy (IGH), IG kappa (IGK) and IG lambda (IGL) loci, which together form the genetic basis of the highly diverse antigen-specific B-cell receptors. These inter-individual allelic variants can be shared between or be specific to human populations. The current IG databases IMGT, VBASE2 and IgPdb hold information about germline alleles, most of which are partial sequences, obtained from a mixture of human (B-cell) samples, many with sequence errors and/or acquired (non-germline) IG variations, induced by somatic hypermutation (SHM) during antigen-specific B-cell responses. We systematically identified true germline alleles (without SHM) from 26 different human populations around the world, profiled by the “1000 Genomes data”. Our resource is uniquely enriched with complete IG allele sequences and their frequencies across human populations. We identified 409 IGHV, 179 IGKV, and 199 IGLV germline alleles supported by at least seven haplotypes (= minimum of four individuals), after removal of potential false-positives, based on using other genomic databases, i.e. ENSEMBL, TopMed, ExAC, ProjectMine. Remarkably, the positions of the identified variant nucleotides of the different alleles are not at random (as observed in case of SHM), but show striking patterns, restricted to limited nucleotide positions, the same as found in other IG data bases, suggesting over-time evolutionary selection processes. The identification of these specific patterns provides extra evidence that the identified variant nucleotides are not sequencing errors, but genuine allelic variants. The diversity of germline allelic variants in IGH and IGL loci is the highest in Africans, while the IGK locus is most diverse in Europeans. We also report on the presence of recombination signal sequences (RSS) in V pseudogenes, explaining their usage in V(D)J rearrangements. We propose that this new set of genuine germline IG sequences can serve as a new population-matched IG (pmIG) database for better understanding B-cell repertoire and B-cell receptor selection processes in disease and vaccination within and between different human populations. The database in format of fasta is available via GitHub (https://github.com/InduKhatri/pmIG).Contribution to the Field StatementWe present a catalogue of immunoglobulin (IG) germline-alleles of unprecedented completeness and accuracy from 26 different human populations belonging to five different large ethnicities (Source: 1000 Genomes). We identified the population distribution of several known germline alleles and identified multiple new alleles, especially in African populations, indicative of high allelic diversity of IG genes in Africa. Strikingly, the identified variant nucleotides of the different alleles are not at random, but show striking patterns, restricted to limited nucleotide positions, the same as found in other IG databases, suggesting over-time evolutionary selection processes. Furthermore, we identified recombination signal sequences in pseudogenes (previously not known). We provide an overview of IG germline alleles shared with and between known databases and also point to potential sources of non-germline variation and incompleteness of the existing IG databases. More importantly, we believe that this information can serve as a novel population-matched IG (pmIG) database, highly valuable for the research community in supporting the dissection and understanding of differences in effectiveness of antibody-based immune responses in infectious diseases, other (immune) diseases and vaccination within and between human populations. Such knowledge might be used in developing population-specific vaccination strategies e.g. for currently ongoing SARS-CoV2 pandemic.


2020 ◽  
Author(s):  
Glendon S. Wu ◽  
Katherine S. Yang-Iott ◽  
Morgann A. Reed ◽  
Katharina E. Hayer ◽  
Kyutae D. Lee ◽  
...  

SUMMARYMonoallelic expression (allelic exclusion) of T and B lymphocyte antigen receptor genes is achieved by the assembly of a functional gene through V(D)J recombination on one allele and subsequent feedback inhibition of recombination on the other allele. There has been no validated mechanism for how only one allele of any antigen receptor locus assembles a functional gene prior to feedback inhibition. Here, we demonstrate that replacement of a single Vβ recombination signal sequence (RSS) with a better RSS increases Vβ rearrangement, reveals Tcrb alleles compete for utilization in the αβ T cell receptor (TCR) repertoire, and elevates the fraction of αβ T cells expressing TCRβ protein from both alleles. The data indicate that poor qualities of Vβ RSSs for recombination with Dβ and Jβ RSSs enforces allelic exclusion by stochastically limiting the incidence of functional Vβ rearrangements on both alleles before feedback inhibition terminates Vβ recombination.


Sign in / Sign up

Export Citation Format

Share Document