corner separation
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 48)

H-INDEX

14
(FIVE YEARS 4)

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 316
Author(s):  
Chao Ning ◽  
Puyu Cao ◽  
Xuran Gong ◽  
Rui Zhu

The bowl diffuser is the main flow component in multistage submersible pumps; however, secondary flow fields can easily induce a separation vortex in the hub corner region of the bowl diffuser during normal operation. To explore the flow mechanism of the hub corner separation vortex and develop a method for suppressing hub corner separation vortices, the lean and sweep of the diffuser blade were optimized using computational fluid dynamics (CFD) simulations and central composite design. Diffuser efficiency, static pressure recovery coefficient, and non-uniformity were selected as the optimization objectives. Details of the internal flow were revealed and the collaborative response relationships between blade lean/sweep parameter equations and optimization objectives were established. The optimization results show that a greater pressure difference between the pressure surface and suction surface (PS–SS) at the inlet can offset transverse secondary flow, whereas a lower PS–SS pressure difference will cause a drop in low-energy fluid in the diffuser mid-section. The blade’s lean scheme suppresses the hub corner separation vortex, leading to an increase in pressure recovery and diffuser efficiency. Moreover, optimizing the sweep scheme can reduce the shroud–hub pressure difference at the inlet to offset spanwise secondary flow and enhance the hub–shroud pressure difference at the outlet, thus driving low-energy fluid further downstream. The sweep scheme suppresses the hub corner vortex, with a resulting drop in non-uniformity of 13.1%. Therefore, optimization of the diffuser blade’s lean and sweep can result in less low-energy fluid or drive it further away from hub, thereby suppressing the hub corner vortex and improving hydraulic performance. The outcomes of this work are relevant to the advanced design of bowl diffusers for multistage submersible pumps.


Author(s):  
Yuchen Ma ◽  
Jinfang Teng ◽  
Mingmin Zhu ◽  
Xiaoqing Qiang

The corner separation and the related secondary flow have great impact on the compressor performance, and non-axisymmetric endwall contouring is proved effective in improving compressor efficiency. The aim of the study is to improve the compressor performance by two local endwall contouring strategies at the design and off-design conditions. The endwall is parameterized and the Bezier curve is used to loft the endwall surface. The design of the contoured endwall is based on a multi-point optimization method to minimize the aerodynamic pressure loss. In order to identify the influence of the contoured endwall, a detailed flow analysis is conducted on four effective contoured endwall designs. The selected endwall geometries exhibit great control ability on the corner separation and significantly reduce the pressure loss at the two operating conditions. The directional concave near the leading edge can induce strong streamwise pressure gradient and accelerate the endwall flow, greatly reducing the cross-passage pressure gradient. The convex structures near the concave edge and at the outlet can block the cross-flow and prevent the interaction between the cross-flow and the suction corner flow. The benefit of the contoured endwall is mainly due to the re-distributed endwall static pressure and blocking of the cross-flow movement. In terms of the control effect, the shape of the concave also matters and better control effect is observed on the deep and wide concave. The flow will be guided by the concave, and the best suppression on corner separation is observed on the concave which follows the suction side. The results also indicate that the relief of the hub corner separation slightly increases the shroud pressure loss.


Author(s):  
Zhiyuan Cao ◽  
Xi Gao ◽  
Xiang Zhang ◽  
Fei Zhang ◽  
Bo Liu

2021 ◽  
pp. 1-30
Author(s):  
Jerome Boudet ◽  
Emmanuel Lévêque ◽  
Hatem Touil

Abstract Lattice-Boltzmann simulations of corner separation flow in a compressor cascade are presented. The lattice Boltzmann approach is rather new in the context of turbomachinery and the configuration is known to be particularly challenging for turbulence modelling. The present methodology is characterized by a quasi-autonomous meshing strategy and a limited computational cost (a net ratio of 5 compared to a previous finite-volume compressible Navier-Stokes simulation). The simulation of the reference case (4° incidence) shows a good agreement with the experimental data concerning the wall pressure distribution or the distribution of losses. A good description is also obtained when incidence angle is increased to 7°, with a span-wise development of the separation. Subsequently, the methodology is used to investigate the sensitivity of the flow to the end-wall boundary-layer thickness. A thinner boundary-layer results in a smaller corner separation, but not a complete elimination. Finally, the ingredients of the wall modelling are analysed in details. On the one hand, the curvature correction term promotes transition to turbulence on the blade suction side and avoids a spurious separation. On the other hand, the addition of the pressure-gradient correction term allows a wider and more realistic corner separation.


2021 ◽  
pp. 107032
Author(s):  
Jianci Ma ◽  
Guang Yang ◽  
Ling Zhou ◽  
Lucheng Ji ◽  
Chun Zhang

2021 ◽  
Author(s):  
Wei Sun ◽  
Zhong-Nan Wang ◽  
Liping Xu

2021 ◽  
Vol 114 ◽  
pp. 106737
Author(s):  
Jinjing Sun ◽  
Xavier Ottavy ◽  
Yangwei Liu ◽  
Lipeng Lu

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3376
Author(s):  
Hejian Wang ◽  
Yanshan Qing ◽  
Bo Liu ◽  
Xiaochen Mao

In order to comprehensively control the corner separation and the blade trailing edge (TE) separation in a high-turning compressor stator cascade, this research proposes a new combined slotted configuration consisting of one full-span slot and two blade-end slots. Taking into account the effect of the blade solidity, the performance of the original cascade and the combined slotted cascade was calculated and evaluated in a wide incidence angle range at two blade solidities. The results indicated that the blade loading and the corner separation range of the original cascade becomes larger as the blade solidity decreases from 1.66 to 1.36, which leads to higher total pressure loss and lower pressure diffusing capacity under positive incidence angles. The low-momentum fluid in the boundary layer can be significantly re-energized by the high-momentum blade-end and full-span slots jets, hence the combined slotted configuration can eliminate the blade TE separation and reduce the corner separation remarkably in the full incidence angle range at the two blade solidities. By adopting the combined slotted configuration, the total pressure loss, turning angle and static pressure coefficient of the original cascade can be increased by −23.2%, 2.7° and 4.7% on average, respectively, when the blade solidity is 1.66, while they can be increased by −27.7%, 3.3° and 7.6% on average, respectively, when the blade solidity is 1.36. The combined slotted configuration has a significant adaptability to the low blade solidity (or high loading) condition and it shows a certain potential in increasing the aeroengine thrust-to-weight ratio by decreasing the compressor single-stage blade number.


Sign in / Sign up

Export Citation Format

Share Document