ore body
Recently Published Documents


TOTAL DOCUMENTS

387
(FIVE YEARS 91)

H-INDEX

20
(FIVE YEARS 3)

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1383
Author(s):  
Hanliang Liu ◽  
Bimin Zhang ◽  
Xueqiu Wang ◽  
Zhixuan Han ◽  
Baoyun Zhang ◽  
...  

In recent years, mineral resources near the surface are becoming scarce, causing focused mineral exploration on concealed deposits in covered terrains. In northern China, covered terrains are widespread and conceal bedrock sequences and mineralization. These represent geochemical challenges for mineral exploration in China. As a deep-penetrating geochemical technology that can reflect the information of deep anomalies, the fine-grained soil prospecting method has achieved ideal test results in arid Gobi Desert covered terrain, semi-arid grassland covered terrain, and alluvium soil covered terrain of northern China. The anomaly range indicated by the fine-grained soil prospecting method is very good with the known ore body location. The corresponding relationship can effectively indicate deep ore bodies and delineate anomalies in unknown areas. Overall, the fine-grained soil prospecting method can be applied to geochemical prospecting and exploration in covered terrains.


2021 ◽  
Vol 11 (23) ◽  
pp. 11439
Author(s):  
Lijun Sun ◽  
Yicheng Ye ◽  
Binyu Luo ◽  
Nanyan Hu ◽  
Pengcheng Li

An inclined pillar is a typical support structure under compression and shear loads for underground mining. The shear load caused by the inclination of the ore-body affects the bearing capacity of the pillar. At present, there is no systematic investigation on the influence of shear load on the stress state evolution and bearing capacity of the inclined pillar. Additionally, there is still a lack of effective evaluation of the bearing capacity of the inclined pillar in the presence of additional shear load. In this research, the theoretical analysis method is used to solve these problems. First, the compressive and shear load components on the inclined pillar were calculated by the tributary area method, and the average stress state of the inclined pillar, considering the influence of the shear load, was characterized by a series of generalized stress circles. The factors that affect the shear load, such as the area extraction ratio, the inclination of the ore-body, and the in-situ stress ratio, were analyzed, and it reveals that there are three kinds of stress paths of the inclined pillar and their trajectories are straight line, circle, and curve, respectively. Then, a shear strength model was proposed to evaluate the bearing capacity of inclined pillars. The expression of this model is multiplied by a vertical pillar strength model and a dimensionless coefficient that is named the contribution factor of shear load (CFSL). Some cases of inclined pillars were employed to verify the rationality of this model. Finally, the factors that affect the bearing capacity of pillars were analyzed. This investigation presents that the shear load affects the stress path and determines the bearing capacity of the pillar. Therefore, the shear load should not be neglected in pillar design and stability analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yulong Lu ◽  
Xingqiang Li ◽  
Yang Liu ◽  
Jiahao Leng

The Baoginshan quartz vein type gold mine in the Baimashan-Longshan-Ziyunshan gold belt is the object of study, and the nature of the fracture structure and its ore-controlling effect are studied through surface and pit investigation, and the nature of the ore-controlling structure system and combination pattern of the Baoginshan gold mine is established. The F7 and F9 fractures in the near-east-west (EW) direction are the main fractures, which tend to the north and control the spreading of the ore zone; the northwest (NW) direction secondary tension fracture, with a dominant yield of 221°∠63°, is a T-type fracture in the Riedel shear mode and is the ore-holding structure of the vein-like ore body; the northeast-east (NEE) direction secondary shear fracture, with a dominant yield of 343°∠53°, is a P-type fracture and the combination of the two controls the specific positioning of the ore body. The characteristics and nature of the fracture structures in the whole ore zone, as well as their combination patterns, indicate that the overall ore-controlling fracture system of Baoginshan is a right-going tensional shear fracture zone composed of NW-oriented (T-type) and NEE-oriented (P-type) secondary fractures with F7 and F9 fractures as boundary fractures. The directions of the principal stresses are σ1≈158°∠40°, σ2≈288°∠38°, and σ3≈42°∠28°, respectively. In the next step of the prospecting process, based on increasing the spacing of prospecting pits (to 40m), in-pit drilling is deployed in the upper and lower discs of the NEE secondary fracture along with the tendency and strike for literacy, which can significantly improve the efficiency and effectiveness of prospecting and greatly reduce the cost of prospecting.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaoshuang Li ◽  
Jian Song

Ground pressure characteristics of the ore body and the overburden deformation of the stope depend highly on the combined influence of geological conditions and mining disturbance. The ore body inclination, as a natural geological factor, has a nonnegligible effect on the underground mining. The ore angle plays a great role in the stress distribution of the overlying rock layer, resulting in the movement and destruction of the rock layer. The variation of the ore angle dominates the stress distribution of the overburden rock, the forms of movement, destruction, and the surface moving basin. Here, taking the geological mining conditions of the deep ore body mining in Jinning Phosphate Mine as the engineering background, we adopt a similar material ratio scheme of each rock layer in the mining area via the similarity theory and the principle of orthogonal experiment. We conduct systematic study on the strata movement, mining failure characteristics, and movement of the overlying rock in stope using a similar simulation test under two different ore angles of 20° and 50°. We found that, as the ore body inclination increases from 20° to 50°, the overburden unloading area of the stope extending to the deep part of the rock layer in the vertical direction is more obvious and its shape is more asymmetric about the stope center. The unloading area is more concentrated in the middle and upper part of the stope, while the upward development trend is more obvious. The relevant results can provide a certain reference for the underground mining of the mines and those with similar conditions.


2021 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Christine Bauer ◽  
Rebecca Wagner ◽  
Beate Orberger ◽  
Markus Firsching ◽  
Christiane Wagner ◽  
...  

X-ray transmission (XRT) and computed tomography (CT) was used on five samples from the Niaz porphyry Cu–Mo deposit in Iran, representing different alteration zones. Analysis of three-dimensional CT data revealed structural information and groups of elements with low, medium and high attenuation, which were assigned to minerals previously determined by scanning electron microscopy. Thus, the mineralization can be located, and the metal/waste ratio can be estimated, leading to more precise ore body modelling and process parameter determination. CT is useful for selected samples as it is time consuming. XRT can be used as real-time process on conveyor belts.


Author(s):  
Franz Weis ◽  
Valentin R. Troll ◽  
Erik Jonsson ◽  
Karin Högdahl ◽  
Chris Harris ◽  
...  

AbstractThe origin of Kiruna-type iron oxide–apatite ores is controversial, and debate presently centres on a ‘magmatic’ versus a ‘hydrothermal’ mode of formation. To complement recent investigations on the Grängesberg iron oxide–apatite ore deposit in the northwestern part of the Palaeoproterozoic Bergslagen ore province in central Sweden, we investigated the oxygen isotope composition of the host rocks of this large iron oxide–apatite ore body. As the metavolcanic and metagranitoid country rocks around the Grängesberg ore body either pre-date or are coeval with ore formation, they would be expected to record an extensive isotopic imprint if the ore body had formed by large-scale hydrothermal processes involving an externally sourced fluid. A direct magmatic formation process, in turn, would have produced localized alteration only, concentrated on the immediate vicinity of the ore body. Here, we test these two hypotheses by assessing the oxygen isotope variations in the host rocks around the main Grängesberg iron oxide–apatite ore body. We analysed oxygen isotopes in quartz from metavolcanic (n = 17) and metagranitoid host rocks (n = 14) from the vicinity of the ore body, and up to 2 km distance along and across the strike of the ore body. Remarkably, we find no significant variation in δ18O values with distance from the ore body, or any deviations in country rock δ18O from common magmatic and/or regional values. Only two samples show shifts to values more negative than the common magmatic range, indicating highly localized hydrothermal overprint only. As a large-scale, low-temperature hydrothermal origin of the ore body through voluminous fluid percolation would be expected to have left a distinct imprint on the oxygen isotope values of the country rocks, our results are more consistent with an ortho-magmatic origin for the Grängesberg iron oxide–apatite ore.


2021 ◽  
Vol 13 (22) ◽  
pp. 12503
Author(s):  
Qinqiang Guo ◽  
Haoxuan Yu ◽  
Zhenyu Dan ◽  
Shuai Li

The gently inclined thin to medium thickness ore body under a weak rock stratum is one of the typical difficult bodies to mine. In order to solve the fuzziness, randomness, and uncertainty in the process of mining method optimization for such ore bodies, a multi-level, multi-factor, multi-objective, and multi-index comprehensive evaluation system involving technology, economy, construction, and safety was constructed by combining the analytic hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS). Taking the Miao-ling gold mine in China as an example, the AHP-TOPSIS comprehensive decision model of mining method optimization is established, the comprehensive superiority degrees of the four mining schemes are 67.57%, 45.07%, 56.07%, and 31.63%, and the upward horizontal drift backfill mining method is determined as the optimal scheme. The method is verified in the actual production of the mine, which not only ensures the safe production of the mine, but also achieves better technical and economic effects. The research results provide a reference for the optimization of mining methods for gently inclined and soft broken complex ore bodies at home and abroad.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1117
Author(s):  
Jinjian Wu ◽  
Qingdong Zeng ◽  
Zhanhao Wei ◽  
Hongrui Fan ◽  
Kuifeng Yang ◽  
...  

The Wulonggou Au district in the East Kunlun Orogen is one of the most important Au producing regions in China. The Yanjingou Au deposit occurs within a shear zone in the northeastern Wulonggou Au district. Based on detailed field investigations, geochemical data for the primary halo, and in situ thermoelectric data for pyrite, the following key results were obtained: (1) the Yanjingou Au deposit has the fractured-altered-rock type gold mineralization that is arsenopyrite-rich; (2) elemental correlations and cluster analysis show that Au and As are the most diagnostic elements; (3) geochemical data for the primary halo indicate the deposit is a shallow supra-ore halo ore body; and (4) in situ pyrite thermoelectric data show that the proportion of P-type pyrite is >80% and the detachment rate is 50%, which can be inferred that the location of the ore body is shallow. Based on our data, we present a mineralization prediction model for the ore body. The Yanjingou Au deposit has a good mineralization and high prospecting potential, with at least half of the ore body being concealed at depth, which has important scientific guiding significance for the breakthrough of prospecting and exploration.


2021 ◽  
Vol 9 (09) ◽  
pp. 86-90
Author(s):  
Sakirudeen A. Abdulsalaam ◽  

We developed an efficient algorithm that generates optimal stope layout for an underground mine. After a mining site has been identified and an exploration has been done, the data gathered is analysed and a modelling technique is applied to produce an ore body. The ore body is divided into thousands of mining blocks in three dimensions. The blocks are assigned values per tonne. The miners desire a stope layout which maximizes the mine value. In this paper, we present a fast algorithm that generates the stope layout efficiently without violating the physical constraints.


2021 ◽  
Vol 59 (5) ◽  
pp. 913-945
Author(s):  
Steve R. Beyer ◽  
Kurt Kyser ◽  
Tom G. Kotzer ◽  
Kevin Ansdell ◽  
David Quirt

ABSTRACT An orientation survey using surficial media was performed over the high-grade McArthur River unconformity-related U deposit (Saskatchewan, Canada) to test whether or not secondary dispersion of elements related to the ore body or alteration zone can be detected at the surface more than 500 m above the deposit. Organic-rich Ah-horizon soils, Fe-rich B-horizon soils, C-horizon soils, tree cores of Jack pine (Pinus banksiana), and glacially dispersed boulders of Manitou Falls Formation sandstone that host the U deposit were collected in four sampling grids near the mine site. Two of the grids overlaid the trace of the P2 fault that hosts the deposit and extends nearly to the surface, one grid overlaid both the P2 fault and one of the high-grade ore bodies (Zone 4), and one grid was located 2.5 km away from the ore body surface trace in the barren hanging wall of the P2 fault. The grid overlying the Zone 4 ore body had the highest proportion of samples with elevated U and low 207Pb/206Pb ratios, the latter indicative of radiogenic Pb from a high-U source, measured in two size fractions of Ah-horizon soils using Na pyrophosphate leach, pine tree cores using total digestion, and sandstone boulders using 2% HNO3 leach. A handful of pathfinder elements, such as As, Co, Ni, and Pb, are variably associated with the U and radiogenic Pb. Sandstone boulders with an assemblage of dravite + kaolinite ± illite, determined using shortwave infrared (SWIR) spectroscopy and matching the alteration mineralogy in the Manitou Falls Formation above the U deposit, were prevalent in the grid above the Zone 4 ore body and in the adjacent grid in the direction of glacial dispersion. A coarse fraction of the B-horizon soils, leached with 5% HNO3, highlighted the grid above the Zone 4 ore body to a lesser extent, whereas HNO3 leaches and aqua regia digests of C-horizon soil separates did not highlight the P2 fault or ore body trace due to influence by parent till mineralogy. Results of environmental monitoring at the mine site, which was active at the time of sampling, suggest that dust containing U, Pb, and radionuclides from waste rock piles and a ventilation shaft could influence A-horizon soil geochemistry near the mine site, and that U and radiogenic Pb anomalies in B- and C-horizon soils near the water table are close to a treated mine effluent discharge point. However, older trees that record elevated U and radiogenic Pb in annual rings that pre-date mining activity, and alteration mineralogy and geochemistry of boulders that are less susceptible to the influences of mining activity, add confidence that the geochemical anomaly in diverse surficial media above the Zone 4 ore body represents secondary dispersion from the underlying U deposit.


Sign in / Sign up

Export Citation Format

Share Document