Abstract
One of the most important units of small-size gas-turbine engines (GTE) is a turbine bladed disk, since it determines the total engine efficiency. Designing a turbine disks is a complex challenge due to the high loads and a large number of structural and technological constraints, as well as a variety of requirements to the bladed disks for small-size GTEs (higher efficiency, lower mass and adequate strength characteristics, etc.).
Diverse requirements to the turbine bladed disks mean that modifying the structure in order to improve some characteristics will degrade other characteristics. A standard solution to this problem is to use the iterative approach, which reduces the design process to a consecutive iteration of setting and solving design problems concerning the bladed disk elements (blade and disk) separately for different aspects. The main drawback of this approach is its tremendous labor intensity and inferior quality of design, as this procedure does not consider the design object as a single entity.
This paper proposes an approach to the turbine bladed disks design based on the use of a single multidisciplinary parametrized 3D model that contains several specialized submodels. These submodels define the essential computational regions, as well as the characteristics of the physical processes and phenomena in the object under study. The model also enables integration and interaction of the submodels in a single computational region.
The single multidisciplinary model is modified and analyzed automatically, so the design problem is transformed into a multi-criteria optimization problem where the weight, gas dynamic and strength characteristics are used as criteria or constraints, and they are improved by varying the geometric parameters of the blade and disk.
Each submodel simulates and analyzes the essential characteristics at the level comparable to the standard engineering calculations. Therefore, the designs obtained as a result of optimization do not need significant improvements, which facilitates and enhances the design process.
The development of an integrated model is time consuming, but since the design and operation of bladed disks are similar, the created parametrized multidisciplinary 3D model can be used in the design of other similar disks after minor alternations taking into account the specifics of the new task.