interaction information
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 44)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Vol 12 (2) ◽  
pp. 594
Author(s):  
Jianjie Shao ◽  
Jiwei Qin ◽  
Wei Zeng ◽  
Jiong Zheng

Recently, the interaction information from reviews has been modeled to acquire representations between users and items and improve the sparsity problem in recommendation systems. Reviews are more responsive to information about users’ preferences for the different aspects and attributes of items. However, how to better construct the representation of users (items) still needs further research. Inspired by the interaction information from reviews, auxiliary ID embedding information is used to further enrich the word-level representation in the proposed model named MPCAR. In this paper, first, a multipointer learning scheme is adopted to extract the most informative reviews from user and item reviews and represent users (items) in a word-by-word manner. Then, users and items are embedded to extract the ID embedding that can reveal the identity of users (items). Finally, the review features and ID embedding are input to the gated neural network for effective fusion to obtain richer representations of users and items. We randomly select ten subcategory datasets from the Amazon dataset to evaluate our algorithm. The experimental results show that our algorithm can achieve the best results compared to other recommendation approaches.


2022 ◽  
Vol 2022 ◽  
pp. 1-21
Author(s):  
Ruibin Zhang ◽  
Yingshi Guo ◽  
Yunze Long ◽  
Yang Zhou ◽  
Chunyan Jiang

A vehicle motion state prediction algorithm integrating point cloud timing multiview features and multitarget interaction information is proposed in this work to effectively predict the motion states of traffic participants around intelligent vehicles in complex scenes. The algorithm analyzes the characteristics of object motion that are affected by the surrounding environment and the interaction of nearby objects and is based on the complex traffic environment perception dual multiline light detection and ranging (LiDAR) technology. The time sequence aerial view map and time sequence front view depth map are obtained using real-time point cloud information perceived by the LiDAR. Time sequence high-level abstract combination features in the multiview scene are then extracted by an improved VGG19 network model and are fused with the potential spatiotemporal interaction of the multitarget operation state data extraction features detected by the laser radar by using a one-dimensional convolution neural network. A temporal feature vector is constructed as the input data of the bidirectional long-term and short-term memory (BiLSTM) network, and the desired input-output mapping relationship is trained to predict the motion state of traffic participants. According to the test results, the proposed BiLSTM model based on point cloud multiview and vehicle interaction information is better than other methods in predicting the state of target vehicles. The results can provide support for the research to evaluate the risk of intelligent vehicle operation environment.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ina Maria Deutschmann ◽  
Gipsi Lima-Mendez ◽  
Anders K. Krabberød ◽  
Jeroen Raes ◽  
Sergio M. Vallina ◽  
...  

Abstract Background Ecological interactions among microorganisms are fundamental for ecosystem function, yet they are mostly unknown or poorly understood. High-throughput-omics can indicate microbial interactions through associations across time and space, which can be represented as association networks. Associations could result from either ecological interactions between microorganisms, or from environmental selection, where the association is environmentally driven. Therefore, before downstream analysis and interpretation, we need to distinguish the nature of the association, particularly if it is due to environmental selection or not. Results We present EnDED (environmentally driven edge detection), an implementation of four approaches as well as their combination to predict which links between microorganisms in an association network are environmentally driven. The four approaches are sign pattern, overlap, interaction information, and data processing inequality. We tested EnDED on networks from simulated data of 50 microorganisms. The networks contained on average 50 nodes and 1087 edges, of which 60 were true interactions but 1026 false associations (i.e., environmentally driven or due to chance). Applying each method individually, we detected a moderate to high number of environmentally driven edges—87% sign pattern and overlap, 67% interaction information, and 44% data processing inequality. Combining these methods in an intersection approach resulted in retaining more interactions, both true and false (32% of environmentally driven associations). After validation with the simulated datasets, we applied EnDED on a marine microbial network inferred from 10 years of monthly observations of microbial-plankton abundance. The intersection combination predicted that 8.3% of the associations were environmentally driven, while individual methods predicted 24.8% (data processing inequality), 25.7% (interaction information), and up to 84.6% (sign pattern as well as overlap). The fraction of environmentally driven edges among negative microbial associations in the real network increased rapidly with the number of environmental factors. Conclusions To reach accurate hypotheses about ecological interactions, it is important to determine, quantify, and remove environmentally driven associations in marine microbial association networks. For that, EnDED offers up to four individual methods as well as their combination. However, especially for the intersection combination, we suggest using EnDED with other strategies to reduce the number of false associations and consequently the number of potential interaction hypotheses.


2021 ◽  
Author(s):  
Ina Maria Deutschmann ◽  
Gipsi Lima-Mendez ◽  
Anders K. Krabberod ◽  
Jeroen Raes ◽  
Sergio M. Vallina ◽  
...  

Background Ecological interactions among microorganisms are fundamental for ecosystem function, yet they are mostly unknown or poorly understood. High-throughput-omics can indicate microbial interactions through associations across time and space, which can be represented as association networks. Associations could result from either ecological interactions between microorganisms, or from environmental selection, where the associations are environmentally-driven. Therefore, before downstream analysis and interpretation, we need to distinguish the nature of the association, particularly if it is due to environmental selection or not. Results We present EnDED (Environmentally-Driven Edge Detection), an implementation of four approaches as well as their combination to predict which links between microorganisms in an association network are environmentally-driven. The four approaches are Sign Pattern, Overlap, Interaction Information, and Data Processing Inequality. We tested EnDED on networks from simulated data of 50 microorganisms. The networks contained on average 50 nodes and 1087 edges, of which 60 were true interactions but 1026 false associations (i.e. environmentally-driven or due to chance). Applying each method individually, we detected a moderate to high number of environmentally-driven edges - 87% Sign Pattern and Overlap, 67% Interaction Information, and 44% Data Processing Inequality. Combining these methods in an intersection approach resulted in retaining more interactions, both true and false (32% of environmentally-driven associations). After validation with the simulated datasets, we applied EnDED on a marine microbial network inferred from 10 years of monthly observations of microbial-plankton abundance. The intersection combination predicted that 8.3% of the associations were environmentally-driven, while individual methods predicted 24.8% (Data Processing Inequality), 25.7% (Interaction Information), and up to 84.6% (Sign Pattern as well as Overlap). The fraction of environmentally-driven edges among negative microbial associations in the real network increased rapidly with the number of environmental factors. Conclusions To reach accurate hypotheses about ecological interactions, it is important to determine, quantify, and remove environmentally-driven associations in marine microbial association networks. For that, EnDED offers up to four individual methods as well as their combination. However, especially for the intersection combination, we suggest using EnDED with other strategies to reduce the number of false associations and consequently the number of potential interaction hypotheses.


2021 ◽  
Vol 39 (3) ◽  
pp. 1-24
Author(s):  
Jiawei Chen ◽  
Chengquan Jiang ◽  
Can Wang ◽  
Sheng Zhou ◽  
Yan Feng ◽  
...  

Sampling strategies have been widely applied in many recommendation systems to accelerate model learning from implicit feedback data. A typical strategy is to draw negative instances with uniform distribution, which, however, will severely affect a model’s convergence, stability, and even recommendation accuracy. A promising solution for this problem is to over-sample the “difficult” (a.k.a. informative) instances that contribute more on training. But this will increase the risk of biasing the model and leading to non-optimal results. Moreover, existing samplers are either heuristic, which require domain knowledge and often fail to capture real “difficult” instances, or rely on a sampler model that suffers from low efficiency. To deal with these problems, we propose CoSam, an efficient and effective collaborative sampling method that consists of (1) a collaborative sampler model that explicitly leverages user-item interaction information in sampling probability and exhibits good properties of normalization, adaption, interaction information awareness, and sampling efficiency, and (2) an integrated sampler-recommender framework, leveraging the sampler model in prediction to offset the bias caused by uneven sampling. Correspondingly, we derive a fast reinforced training algorithm of our framework to boost the sampler performance and sampler-recommender collaboration. Extensive experiments on four real-world datasets demonstrate the superiority of the proposed collaborative sampler model and integrated sampler-recommender framework.


Sign in / Sign up

Export Citation Format

Share Document