blind thrust
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 22)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
James J. Holmes ◽  
Hector Perea ◽  
Neal W. Driscoll ◽  
Graham M. Kent

Deformation observed along the San Mateo (SMT) and San Onofre trends (SOT) in southern California has been explained by two opposing structural models, which have very different hazard implications for the coastal region. One model predicts that the deformation is transpressional in a predominantly right lateral fault system with left lateral step-overs. Conversely in the alternative model, the deformation is predicted to be compressional associated with a regional blind thrust that reactivated detachment faults along the continental margin. State-of-the-art 3D P-Cable seismic data were acquired to characterize the geometry and linkage of faults in the SMT and SOT. The new observations provide evidence that deformation along the slope is more consistent with step-over geometry than a regional blind thrust model. For example, regions in the SOT exhibit small scale compressional structures that deflect canyons along jogs in the fault segments across the slope. The deformation observed in the SMT along northwesterly trending faults has a mounded, bulbous character in the swath bathymetry data with steep slopes ( ∼ 25°) separating the toe of the slope and the basin floor. The faulting and folding in the SMT are very localized and occur where the faults trend more northwesterly (average trend ∼ 285°) with the deformation dying away both towards the north and east. In comparison, the SOT faults trend more northerly (average trend ∼ 345°). The boundary between these fault systems is abrupt and characterized by shorter faults that appear to be recording right lateral displacement and possibly accommodating the deformation between the two larger fault systems. Onlapping undeformed turbidite layers reveal that the deformation associated with both major fault systems may be inactive and radiocarbon dating suggests deformation ceased in the middle to late Pleistocene (between 184 and 368 kyr). In summary, our preferred conceptual model for tectonic deformation along the SMT and SOT is best explained by left lateral step-overs along the predominantly right lateral strike-slip fault systems.


2021 ◽  
Author(s):  
Ryo Okuwaki ◽  
Wenyuan Fan

A devastating magnitude 7.2 earthquake struck Southern Haiti on 14 August 2021. The earthquake caused severe damages and over 2000 casualties. Resolving the earthquake rupture process can provide critical insights into hazard mitigation. Here we use integrated seismological analyses to obtain the rupture history of the 2021 earthquake. We find the earthquake first broke a blind thrust fault and then jumped to a disconnected strike-slip fault. Neither of the fault configurations aligns with the left-lateral tectonic boundary between the Caribbean and North American plates. The complex multi-fault rupture may result from the oblique plate convergence in the region that the initial thrust rupture is due to the boundary-normal compression and the following strike-slip faulting originates from the Gonâve microplate block movement, orienting towards the SW-NE direction. The complex rupture development of the earthquake suggests that the regional deformation is accommodated by a network of segmented faults with diverse faulting conditions.


2021 ◽  
Vol 13 (18) ◽  
pp. 3593
Author(s):  
Sukru O. Karaca ◽  
Ismail A. Abir ◽  
Shuhab D. Khan ◽  
Erman Ozsayın ◽  
Kamil A. Qureshi

The Suleiman Fold-Thrust Belt represents an active deformational front at the western margin of the Indian plate and has been a locus of major earthquakes. This study focuses on the western part of the Suleiman Fold-Thrust Belt that comprises two parallel NW–SE oriented faults: Harnai Fault and Karahi Fault. These faults have known thrust components; however, there remains uncertainty about the lateral component of motion. This work presents the new observation of surface deformation using the Small Baseline Subset (SBAS), Interferometric Synthetic Aperture Radar (InSAR) technique on Sentinel-1A datasets to decompose displacement into the vertical and horizontal components employing ascending and descending track geometries. The subsurface structural geometry of this area was assessed using 2D seismic and well data. In addition, geomorphic indices were calculated to assess the relative tectonic activity of the area. InSAR results show that the Karahi Fault has a ~15 mm right-lateral movement for descending and ~10 mm/for ascending path geometries. The Harnai Fault does not show any lateral movement. Seismic data are in agreement with the InSAR results suggesting that the Harnai Fault is a blind thrust. This work indicates that the block between these two faults displays a clockwise rotation that creates the “bookshelf model”.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuval Levy ◽  
Thomas Rockwell ◽  
Shant Minas ◽  
Alex Hughes ◽  
Dylan Rood

We developed a forward model using the Trishear module in MOVE to better understand the structure of the northwestern San Fernando Valley and the relationship among the Santa Susana, Hospital, Mission Hills and Northridge Hills faults. This study was motivated by the 1971 San Fernando earthquake and previous work that inferred a high slip rate on the Santa Susana fault, which is in apparent contrast to the lack of significant geomorphic expression of the fault in the Sylmar Basin region. We trenched the Mission Hills anticline from the crest to the base of slope and demonstrate that the Mission Hills anticline is an actively growing fault propagation fold. The associated thrust tip is either deeper than 15 m or sufficiently far to the south that the fault was not encountered in large diameter borings, but the minimum structural relief across the Mission Hills fault since the late Pleistocene is on the order of 37 m, suggesting a minimum uplift rate of 0.5 mm/yr. Our work presents a structural analysis that demonstrates how the Santa Susana fault system evolved in time, with the frontal thrust progressively migrating southward to the Mission Hills fault, and farther south to the Northridge Hills blind thrust. The progression of faulting towards the direction of vergence is compatible with the observed thrust front migration in the western Transverse Ranges of California, and other trust belts around the world.


2020 ◽  
Vol 90 (11) ◽  
pp. 1527-1548
Author(s):  
Katarina Gobo ◽  
Ervin Mrinjek ◽  
Vlasta Ćosović

ABSTRACT Mass-transport deposits (MTDs) represent resedimentation phenomena triggered by the combined effect of seismic shocks of regional scale, structural tilting, basin-floor gradient, relative sea-level fluctuations, and/or excess pore-water pressure and can be useful in the reconstruction of basin development dynamics. The present study from the Dinaric Foreland Basin in Croatia documents several limestone blocks (olistoliths), carbonate debris, and associated bipartite carbonate megabeds as MTDs of exotic origin encased in deep neritic hyperpycnites, referred to as host deposits. Detailed facies and micropaleontological analyses indicate that host deposits were sourced from a fluvio-deltaic system located in the proximity of the uplifting orogen, while the MTDs originated from gravitational collapses of late Ypresian and early Lutetian limestones that were uplifted on blind-thrust anticline ridges on the opposite side of the basin. Mass wasting-produced carbonate blocks, debris, and gravity flows were probably triggered concurrently during the middle to late Eocene, but the blocks could have travelled faster downslope due to the lubricating effect of the underlying water “cushion,” overpressured mud, and the pull of gravity. Debrisflows and co-genetic turbidity currents that contributed to the formation of bipartite megabeds were likely mobilized deeper and moved slower than the carbonate blocks and could have been partly deflected by the previously emplaced olistoliths, resulting in megabed thinning along the olistoliths' down-dip edges. Those collapses were most likely triggered by the combined effect of relative sea-level changes associated with tectonic activity and seismic shocks of regional scale. The study suggests that progressive uplift of the frontal blind-thrust anticline ridge resulted in episodic emergence and collapses of progressively older limestone units, and marked the onset of development of the wedge-top basin. Conceptual models of olistolith emplacement and onset of basin development are suggested and may be applicable to both ancient and recent settings. The insights obtained from the integration of detailed facies analysis and micropaleontology may be useful in similar areas where such a level of detail cannot be obtained by conventional field methods.


2020 ◽  
Vol 110 (6) ◽  
pp. 2599-2618
Author(s):  
Sirena Ulloa ◽  
Julian C. Lozos

ABSTRACT Thrust-fault earthquakes are particularly hazardous in that they produce stronger ground motion than normal or strike-slip events of the same magnitude due to a combination of hanging-wall effects, vertical asymmetry, and higher stress drop due to compression. In addition, vertical surface displacement occurs in both blind-thrust and emergent thrust ruptures, and can potentially damage lifelines and infrastructure. Our 3D dynamic rupture modeling parameter study focuses on planar thrust faults of varying dip angles, and burial depth establishes a physics-based understanding of how ground motion and permanent ground surface displacement depend on these geometrical parameters. We vary dip angles from 20° to 70° and burial depths from 0 to 5 km. We conduct rupture models on these geometries embedded in a homogeneous half-space, using different stress drops but fixed frictional parameters, and with homogeneous initial stresses versus stresses tapered toward the ground surface. Ground motions decrease as we bury the fault under homogeneous initial stresses. In contrast, under tapered initial stresses, ground motions increase in blind-thrust faults as we bury the fault, but are still the highest in emergent faults. As we steepen dip angle, peak particle velocities in the homogeneous stress case generally increase in emergent faults but decrease in blind-thrust faults. Meanwhile, ground motion consistently increases with steepening dip angle under the stress gradient. We find that varying stress drop has a considerable scalar effect on both ground motion and permanent surface displacement, whereas changing fault strength has a negligible effect. Because of the simple geometry of a planar fault, our results can be applied to understanding basic behavior of specific real-world thrust faults.


2020 ◽  
Vol 117 (30) ◽  
pp. 17615-17621
Author(s):  
Michael J. Duvall ◽  
John W. F. Waldron ◽  
Laurent Godin ◽  
Yani Najman

The Himalayan foreland basin formed by flexure of the Indian Plate below the advancing orogen. Motion on major thrusts within the orogen has resulted in damaging historical seismicity, whereas south of the Main Frontal Thrust (MFT), the foreland basin is typically portrayed as undeformed. Using two-dimensional seismic reflection data from eastern Nepal, we present evidence of recent deformation propagating >37 km south of the MFT. A system of tear faults at a high angle to the orogen is spatially localized above the Munger-Saharsa basement ridge. A blind thrust fault is interpreted in the subsurface, above the sub-Cenozoic unconformity, bounded by two tear faults. Deformation zones beneath the Bhadrapur topographic high record an incipient tectonic wedge or triangle zone. The faults record the subsurface propagation of the Main Himalayan Thrust (MHT) into the foreland basin as an outer frontal thrust, and provide a modern snapshot of the development of tectonic wedges and lateral discontinuities preserved in higher thrust sheets of the Himalaya, and in ancient orogens elsewhere. We estimate a cumulative slip of ∼100 m, accumulated in <0.5 Ma, over a minimum slipped area of ∼780 km2. These observations demonstrate that Himalayan ruptures may pass under the present-day trace of the MFT as blind faults inaccessible to trenching, and that paleoseismic studies may underestimate Holocene convergence.


2020 ◽  
Vol 8 (2) ◽  
pp. 221-243 ◽  
Author(s):  
Vincent Godard ◽  
Jean-Claude Hippolyte ◽  
Edward Cushing ◽  
Nicolas Espurt ◽  
Jules Fleury ◽  
...  

Abstract. Documenting the spatial variability of tectonic processes from topography is routinely undertaken through the analysis of river profiles, since a direct relationship between fluvial gradient and rock uplift has been identified by incision models. Similarly, theoretical formulations of hillslope profiles predict a strong dependence on their base-level lowering rate, which in most situations is set by channel incision. However, the reduced sensitivity of near-threshold hillslopes and the limited availability of high-resolution topographic data has often been a major limitation for their use to investigate tectonic gradients. Here we combined high-resolution analysis of hillslope morphology and cosmogenic-nuclide-derived denudation rates to unravel the distribution of rock uplift across a blind thrust system at the southwestern Alpine front in France. Our study is located in the Mio-Pliocene Valensole molassic basin, where a series of folds and thrusts has deformed a plateau surface. We focused on a series of catchments aligned perpendicular to the main structures. Using a 1 m lidar digital terrain model, we extracted hillslope topographic properties such as hilltop curvature CHT and nondimensional erosion rates E∗. We observed systematic variation of these metrics coincident with the location of a major underlying thrust system identified by seismic surveys. Using a simple deformation model, the inversion of the E∗ pattern allows us to propose a location and dip for a blind thrust, which are consistent with available geological and geophysical data. We also sampled clasts from eroding conglomerates at several hilltop locations for 10Be and 26Al concentration measurements. Calculated hilltop denudation rates range from 40 to 120 mm kyr−1. These denudation rates appear to be correlated with E∗ and CHT that were extracted from the morphological analysis, and these rates are used to derive absolute estimates for the fault slip rate. This high-resolution hillslope analysis allows us to resolve short-wavelength variations in rock uplift that would not be possible to unravel using commonly used channel-profile-based methods. Our joint analysis of topography and geochronological data supports the interpretation of active thrusting at the southwestern Alpine front, and such approaches may bring crucial complementary constraints to morphotectonic analysis for the study of slowly slipping faults.


2020 ◽  
Author(s):  
Tatsuya Ishiyama ◽  
Hiroshi Sato ◽  
Naoko Kato ◽  
Susumu Abe ◽  
Satoru Yokoi ◽  
...  

&lt;p&gt;Back-arc failed rifts in many subduction zones are recognized as mechanically and thermally weak zones that possibly play important roles in strain accommodation at later post-rift stages within the overriding plates. In case of Miocene back-arc failed rift structures in the Sea of Japan in the Eurasian-Pacific subduction system, Quaternary activity of post-rift positive inversion of normal faults are predominant, part of which are blurred by fast subsidence in alluvial plains above densified lower crust associated with mafic intrusion into rift axis. To define such active fault-related structures in alluvial plain with subtle geomorphic signatures, we collected new high-resolution seismic reflection data across the alluvial plain (Shonai plain) in Northeast Japan, where an enigmatic 1894 earthquake event (M7.0) caused devastating damages on local communities. We deployed hundreds of portable offline seismic recorders covering whole seismic lines and provided seismic shots using Vibroseis trucks at all nearby receivers, to create high-resolution, depth-converted cross sections based on seismic reflection data. Depth-converted sections to 2-3 km depth clearly illuminate pairs of west-vergent, thrust-related folds that deformed Miocene to Pleistocene sedimentary and volcaniclastic rocks. Among them, we defined previously unrecognized, west-dipping blind thrust structures beneath coastal plains that deform Pleistocene and Holocene basin-fill units. Structures of these blind thrusts are consistent with distribution of earthquake-damaged houses and, at least partly, might activate during the 1894 seismic event. Interestingly, upward extension of synclinal axial surfaces are consistent with very subtle west-facing fold scarps that deform alluvial plain deposits illuminated by DEM, suggesting recent fault activities and related structural growth of thrust-related folds. These examples nicely demonstrate that combining subtle geomorphology of constrained by DEM and high resolution seismic reflection profiling is an effective tool to define recent structural growth and activity of otherwise inaccessible blind thrust structures and mitigating their elusive seismic hazards.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document