gaussian type
Recently Published Documents


TOTAL DOCUMENTS

390
(FIVE YEARS 41)

H-INDEX

48
(FIVE YEARS 2)

Author(s):  
Yan Przhiyalkovskiy

Abstract In this work, the operator-sum representation of a quantum process is extended to the probability representation of quantum mechanics. It is shown that each process admitting the operator-sum representation is assigned a kernel, convolving of which with the initial tomogram set characterizing the system state gives the tomographic state of the transformed system. This kernel, in turn, is broken into the kernels of partial operations, each of them incorporating the symbol of the evolution operator related to the joint evolution of the system and an ancillary environment. Such a kernel decomposition for the projection to a certain basis state and a Gaussian-type projection is demonstrated as well as qubit flipping and amplitude damping processes.


2022 ◽  
Vol 130 (2) ◽  
pp. 260
Author(s):  
А.Б. Плаченов ◽  
Г.Н. Дьякова

A new class of localized solutions of paraxial parabolic equation is introduced. Each solution is a product of some Gaussian-type localized axisymmetric function (different from the fundamental mode) and an amplitude factor. The latter can be expressed via an arbitrary solution of the Helmholtz equation on an auxiliary two-sheet complex surface. The class under consideration contains well known and novel solutions, including those describing optical vortices of various orders.


2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Gradimir V. Milovanovic ◽  
◽  
Nevena Vasovic ◽  

Orthogonal polynomials and the corresponding quadrature formulas of Gaussian type concerni λ ng > the 1 e / v 2 en wei x gh > t f 0 unction ω(t; x) = exp λ (−= xt 1 2) / ( 2 1 − t2)−1/2 on (−1, 1), with parameters − and , are considered. For these quadrature rules reduce to the socalled Gauss-Rys quadrature formulas, which were investigated earlier by several authors, e.g., Dupuis at al 1976 and 1983; Sagar 1992; Schwenke 2014; Shizgal 2015; King 2016; Milovanovic ´ 2018, etc. In this generalized case, the method of modified moments is used, as well as a transformation of quadratures on (−1, 1) with N nodes to ones on (0, 1) with only (N + 1)/2 nodes. Such an approach provides a stable and very efficient numerical construction.


Author(s):  
Christoph Witzorky ◽  
Guennaddi Paramonov ◽  
Foudhil Bouakline ◽  
Ralph Jaquet ◽  
Peter Saalfrank ◽  
...  

Author(s):  
Andreas Hohl

AbstractDifferential systems of pure Gaussian type are examples of D-modules on the complex projective line with an irregular singularity at infinity, and as such are subject to the Stokes phenomenon. We employ the theory of enhanced ind-sheaves and the Riemann–Hilbert correspondence for holonomic D-modules of D’Agnolo and Kashiwara to describe the Stokes phenomenon topologically. Using this description, we perform a topological computation of the Fourier–Laplace transform of a D-module of pure Gaussian type in this framework, recovering and generalizing a result of Sabbah.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
José Luis Romero

AbstractWe show that a real-valued function f in the shift-invariant space generated by a totally positive function of Gaussian type is uniquely determined, up to a sign, by its absolute values $$\{|f(\lambda )|: \lambda \in \Lambda \}$$ { | f ( λ ) | : λ ∈ Λ } on any set $$\Lambda \subseteq {\mathbb {R}}$$ Λ ⊆ R with lower Beurling density $$D^{-}(\Lambda )>2$$ D - ( Λ ) > 2 .We consider a totally positive function of Gaussian type, i.e., a function $$g \in L^2({\mathbb {R}})$$ g ∈ L 2 ( R ) whose Fourier transform factors as $$\begin{aligned} \hat{g}(\xi )= \int _{{\mathbb {R}}} g(x) e^{-2\pi i x \xi } dx = C_0 e^{- \gamma \xi ^2}\prod _{\nu =1}^m (1+2\pi i\delta _\nu \xi )^{-1}, \quad \xi \in {\mathbb {R}}, \end{aligned}$$ g ^ ( ξ ) = ∫ R g ( x ) e - 2 π i x ξ d x = C 0 e - γ ξ 2 ∏ ν = 1 m ( 1 + 2 π i δ ν ξ ) - 1 , ξ ∈ R , with $$\delta _1,\ldots ,\delta _m\in {\mathbb {R}}, C_0, \gamma >0, m \in {\mathbb {N}} \cup \{0\}$$ δ 1 , … , δ m ∈ R , C 0 , γ > 0 , m ∈ N ∪ { 0 } , and the shift-invariant space$$\begin{aligned} V^\infty (g) = \Big \{ f=\sum _{k \in {\mathbb {Z}}} c_k\, g(\cdot -k): c \in \ell ^\infty ({\mathbb {Z}}) \Big \}, \end{aligned}$$ V ∞ ( g ) = { f = ∑ k ∈ Z c k g ( · - k ) : c ∈ ℓ ∞ ( Z ) } , generated by its integer shifts within $$L^\infty ({\mathbb {R}})$$ L ∞ ( R ) . As a consequence of (1), each $$f \in V^\infty (g)$$ f ∈ V ∞ ( g ) is continuous, the defining series converges unconditionally in the weak$$^*$$ ∗ topology of $$L^\infty $$ L ∞ , and the coefficients $$c_k$$ c k are unique [6, Theorem 3.5].


Sign in / Sign up

Export Citation Format

Share Document