Abstract
In the present cost-constrained environment, it is critical that operators effectively complete their wells while minimizing capital expenditure. Optimization efforts focus on increasing recovery factor by managing landing zone, increasing the number of effective fractures, increasing the size of the fractures, and increasing the length of the lateral, while reducing the total number of stages and job size, without sacrificing efficient proppant and fluid delivery. The same pressure to reduce expenditure also impacts decision making on diagnostic evaluation, reducing operators to ‘free’ or low-cost feedback, like surface production rates and decline curves.
Operators are responding to these challenges by utilizing a combination of lower cost, post-completion diagnostics like deployed fiber optics, downhole camera evaluation of perforations and radioactive tracers. These less expensive options allow for a broader scope and number of diagnostic inquiries, whereas a permanent fiber may prove to be cost-prohibitive, reducing diagnostic focus to one well, in one part of a play. Combining differing diagnostic technologies enhances the overall description of the well and reservoir behaviors and improves confidence in their interpretation of stimulation and production efficiency; furthermore, where a single diagnostic measurement may be unlikely to justify dramatic change in a completion strategy, a combination of data points from different domains can and does support design change that leads to rapid, real world performance improvements.
Care is needed in the conclusions drawn when utilizing complimentary diagnostics due to the differences in depth of investigation and the non-unique interpretation of some data types. This paper discusses three post-completion diagnostic technologies, perforation evaluation by downhole camera, radioactive tracers, and distributed acoustic and temperature sensing (DAS+DTS) data and their respective physical measurements, strengths and weaknesses and how they can be combined to better understand well and reservoir behavior. It concludes with a review of completion optimization efforts from the Rockies area, where these post-completion diagnostic technologies were applied in the evaluation of eXtreme Limited Entry (XLE) trials.
A statistical analysis of the RA tracer, downhole camera measurement of perforation area and deployed fiber optic acquisition of DAS+DTS reveals no correlation between diagnostic answers, indicating no one diagnostic measurement can accurately predict the other, such that it could substitute for that diagnostic and provide the same answer.
Asking the right question can often enhance the value of diagnostic descriptions of the system in question. Those answers often lead to the next question and clear the path forward in advancing completion optimization. Complimentary diagnostics facilitate a more complete understanding of stimulation and production performance when compared, increasing confidence when they agree. When one or more appear to disagree, the different respective physical measurements and depths of investigation often reveal a more complete and complex understanding of stimulation and production efficiency. As an aggregate they provide clarity on the effect of efforts to create conductive pathways into the reservoir, allowing operators increased control over the resulting production.