X-ray free electron lasers (FELs) produce ultra short bursts of coherent radiation at the wavelengths ~1–100 . In the absence of ready seed in this range, the fundamental tone is usually radiated in self-amplified spontaneous emission (SASE) FELs. With the goal to achieve maximum performance in minimum size and cost of a FEL, we study the harmonic multiplication in resonating undulator cascades as viable alternative to the SASE fundamental radiation. The harmonic power evolution along FELs is analyzed for the SASE and the harmonic self-seed. The analytical results are compared with available data for soft X-rays FLASH2. The possibility of harmonic radiation is studied for FELs with variable deflection parameter k: FLASH2, SwissFEL and currently built LCLS-II. We demonstrate earlier growth of the harmonic power in a buncher as compared with the SASE regime at the same wavelength. The difference is explained theoretically by the harmonic bunching growth in the buncher, as compared with that in the SASE FEL at the same wavelength. Excellent characteristics of the SwissFEL allow amplification of its third harmonic. We propose the harmonic self-seed, which would allow 10 m shorter undulator length for saturation at the same power, and up to 30% shorter radiation wavelength with the existing electron beam. At the LCLS-II, good bunching at the third harmonic wavelength in a dedicated buncher allows early and strong third harmonic growth. However, further resonating amplifier requires small value of k in LCLS-II undulators, which makes the amplification slow. We propose using the full amplification of the third FEL harmonic in LCLS-II undulators with bunching disruption between them at the wavelength of the fundamental. We show that this scheme allows >1 GW FEL power at λ=0.25 nm wavelength achievable already at ~40 m of the undulators with the electron beam energy E=4 GeV.