porosity parameter
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 15)

H-INDEX

5
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Muhammad Zubair ◽  
Muhammad Jawad ◽  
Ebenezer Bonyah ◽  
Rashid Jan

This article develops the semianalytical analysis of couple stress hybrid nanofluid free stream past a rotating disc by applying the magnetic flux effects and radiation of thermal energy. The analysis of such kind of mixed convective flow is most important due to numerous industrial applications such as electronic devices, atomic reactors, central solar energy equipment, and heat transferring devices. The impact of variable permeability is also considered in the study. The permeability of the disc obeys the Darcy-Forchheimer model. The hybrid nanofluid is composed of water, titanium dioxide, and aluminum oxide. The set of governing equations in the PDE form are transformed to couple ODEs by applying similarity transformations. The ODE set are solved by applying the technique of HAM. The graphs of impacts of numerous physical parameters over momentum, energy, and concentration profiles are drawn in computer-based application Mathematica 11.0.1. In the sundry physical parameters, the porosity parameter, Reynolds number, inertial parameter, Prandtl number, Schmidt number, couple stress, and quotient of rotational momentum to elongating rate are included. During the analysis, it is found that the momentum profile of the couple stress hybrid nanofluid enhances with local inertial parameter, couple stress parameter, porosity parameter, and Reynolds number but declines for the growth in Hartmann number. Heat transfer rate enhances for radiation parameter but decreases in variable for temperature, thermal stratification parameter, thermophoresis parameter, and Brownian parameter.


2021 ◽  
Author(s):  
Mohsen Nasr Esfahani ◽  
Mohammad Hashemian ◽  
Farshid Aghadavoudi

Abstract This paper is provided to analyze the free vibration of a sandwich truncated conical shell with a saturated functionally graded porous (FGP) core and two same homogenous isotropic face sheets. The mechanical behavior of the saturated FGP is assumed based on Biot’s theory, the shell is modeled via the first-order shear deformation theory (FSDT), and the governing equations and boundary conditions are derived utilizing Hamilton’s principle. Three different porosity distribution patterns are studied including one homogenous uniform distribution pattern and two non-homogenous symmetric ones. The porosity parameters in mentioned distribution patterns are regulated to make them the same in the shell’s mass. The equations of motion are solved exactly in the circumferential direction via proper sinusoidal and cosinusoidal functions, and a numerical solution is provided in the meridional direction utilizing the differential quadrature method (DQM). The precision of the model is approved and the influences of several parameters such as circumferential wave number, the thickness of the FGP core, porosity parameter, porosity distribution pattern, the compressibility of the pore fluid, and boundary conditions on the shell’s natural frequencies are investigated. It is shown that the highest natural frequencies usually can be achieved when the larger pores are located close to the shell’s middle surface and in each vibrational mode, there is a special value of the porosity parameter which leads to the lowest natural frequencies. It is deduced that in most cases, natural frequencies decrease by increasing the thickness of the FGP core. In addition, reducing the compressibility of the porefluid a small growth in the natural frequencies can be seen.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naila Shaheen ◽  
Hashim M. Alshehri ◽  
Muhammad Ramzan ◽  
Zahir Shah ◽  
Poom Kumam

AbstractIn this study, the effects of variable characteristics amalgamated with chemical reaction and Arrhenius activation energy are analyzed on a two-dimensional (2D) electrically conducting radiative Casson nanoliquid flow past a deformable cylinder embedded in a porous medium. The surface of the cylinder is deformable in the radial direction i.e., the z-axis. The impression of Soret and Dufour's effects boosts the transmission of heat and mass. The flow is analyzed numerically with the combined impacts of momentum slip, convective heat, and mass conditions. A numerical solution for the system of the differential equations is attained by employing the bvp4c function in MATLAB. The dimensionless protuberant parameters are graphically illustrated and discussed for the involved profiles. It is perceived that on escalating the velocity slip parameter and porosity parameter velocity field depreciates. Also, on escalating the radiation parameter and heat transfer Biot number a prominent difference is noticed in an upsurge of the thermal field. For growing values of Brownian motion and thermophoretic parameters, temperature field augments. On escalating the curvature parameter and porosity parameter, drag force coefficient upsurges. The outcome of the Soret number, mass transfer Biot number, and activation energy parameter is quite eminent on the concentration distribution for the sheet in comparison to the deformable cylinder. A comparative analysis of the present investigation with an already published work is also added to substantiate the envisioned problem.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Manoj Kumar Nayak ◽  
Sachin Shaw ◽  
H. Waqas ◽  
Taseer Muhammad

Purpose The purpose of this study is to investigate the Cattaneo-Christov double diffusion, multiple slips and Darcy-Forchheimer’s effects on entropy optimized and thermally radiative flow, thermal and mass transport of hybrid nanoliquids past stretched cylinder subject to viscous dissipation and Arrhenius activation energy. Design/methodology/approach The presented flow problem consists of the flow, heat and mass transportation of hybrid nanofluids. This model is featured with Casson fluid model and Darcy-Forchheimer model. Heat and mass transportations are represented with Cattaneo-Christov double diffusion and viscous dissipation models. Multiple slip (velocity, thermal and solutal) mechanisms are adopted. Arrhenius activation energy is considered. For graphical and numerical data, the bvp4c scheme in MATLAB computational tool along with the shooting method is used. Findings Amplifying curvature parameter upgrades the fluid velocity while that of porosity parameter and velocity slip parameter whittles down it. Growing mixed convection parameter, curvature parameter, Forchheimer number, thermally stratified parameter intensifies fluid temperature. The rise in curvature parameter and porosity parameter enhances the solutal field distribution. Surface viscous drag gets controlled with the rising of the Casson parameter which justifies the consideration of the Casson model. Entropy generation number and Bejan number upgrades due to growth in diffusion parameter while that enfeeble with a hike in temperature difference parameter. Originality/value To the best of the authors’ knowledge, this research study is yet to be available in the existing literature.


Author(s):  
Dipankar Chatterjee ◽  
Chandan Kumar

Abstract A solid bluff object produces a recirculating wake region immediately behind it when subjected to flow separation under a steady flow condition. Similar phenomena can also be observed for a porous body. However, unlike the solid object the porous body allows some part of the flow to go through it. A consequence of this flow penetration in porous objects is, the wake behind the body may get reduced in size and detach from the body. The wake even may disappear at some value of the porosity parameter (Darcy number). In this brief article, we compute the critical values of the porosity parameter for complete disappearance of the wake region behind two-dimensional porous bodies of circular and square shapes. A regime diagram is constructed to show the regions of wake formation, its detachment and finally its disappearance around circular and square shaped porous bodies. The critical value of the porosity parameter increases with increasing Reynolds number, and it is found greater for the square body in comparison to the circular one. The study provides a quantitative estimation of how the porosity plays a significant role in demarcating the flow characteristics around porous objects.


2021 ◽  
Vol 10 (2) ◽  
pp. 222-231
Author(s):  
Shafiq Ahmad ◽  
Sohail Nadeem ◽  
Aysha Rehman

The mixed convective flow of hybrid nanofluid (SWCNT-MWCNT/EG) containing micropolar fluid past a Riga surface embedded in porous medium is explored in detail throughout this study. In the momentum equation, the Darcy Forchheimer effect is used. The heat transfer phenomenon is exploited with viscous dissipation and thermal stratification over a non-Fourier heat flux model. PDEs are transformed into the necessary governing equations using transformations. The numerical results of non-linear governing equations are collected using Matlab function bvp4c. Graphical representations of the effects of relevant parameters on velocity, skin friction, and temperature are shown. The comparison of simple nanofluid and hybrid nanofluid is discussed in graphs. The temperature field is higher for hybrid nanofluid than simple nanofluid when solid volume fraction enhances. With increasing solid volume fraction, porosity parameter, and mixed convection parameter, the axial friction factor rises. The momentum boundary layer is inversely proportional to the slip parameter, Hartman number, variable viscosity and the porosity parameter.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 605
Author(s):  
Anum Shafiq ◽  
Ghulam Rasool ◽  
Hammad Alotaibi ◽  
Hassan M. Aljohani ◽  
Abderrahim Wakif ◽  
...  

This numerical study aims to interpret the impact of non-linear thermal radiation on magnetohydrodynamic (MHD) Darcy-Forchheimer Casson-Water/Glycerine nanofluid flow due to a rotating disk. Both the single walled, as well as multi walled, Carbon nanotubes (CNT) are invoked. The nanomaterial, thus formulated, is assumed to be more conductive as compared to the simple fluid. The properties of effective carbon nanotubes are specified to tackle the onward governing equations. The boundary layer formulations are considered. The base fluid is assumed to be non-Newtonian. The numerical analysis is carried out by invoking the numerical Runge Kutta 45 (RK45) method based on the shooting technique. The outcomes have been plotted graphically for the three major profiles, namely, the radial velocity profile, the tangential velocity profile, and temperature profile. For skin friction and Nusselt number, the numerical data are plotted graphically. Major outcomes indicate that the enhanced Forchheimer number results in a decline in radial velocity. Higher the porosity parameter, the stronger the resistance offered by the medium to the fluid flow and consequent result is seen as a decline in velocity. The Forchheimer number, permeability parameter, and porosity parameter decrease the tangential velocity field. The convective boundary results in enhancement of temperature facing the disk surface as compared to the ambient part. Skin-friction for larger values of Forchheimer number is found to be increasing. Sufficient literature is provided in the introduction part of the manuscript to justify the novelty of the present work. The research greatly impacts in industrial applications of the nanofluids, especially in geophysical and geothermal systems, storage devices, aerospace engineering, and many others.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 702
Author(s):  
Ramanahalli Jayadevamurthy Punith Gowda ◽  
Rangaswamy Naveen Kumar ◽  
Anigere Marikempaiah Jyothi ◽  
Ballajja Chandrappa Prasannakumara ◽  
Ioannis E. Sarris

The flow and heat transfer of non-Newtonian nanofluids has an extensive range of applications in oceanography, the cooling of metallic plates, melt-spinning, the movement of biological fluids, heat exchangers technology, coating and suspensions. In view of these applications, we studied the steady Marangoni driven boundary layer flow, heat and mass transfer characteristics of a nanofluid. A non-Newtonian second-grade liquid model is used to deliberate the effect of activation energy on the chemically reactive non-Newtonian nanofluid. By applying suitable similarity transformations, the system of governing equations is transformed into a set of ordinary differential equations. These reduced equations are tackled numerically using the Runge–Kutta–Fehlberg fourth-fifth order (RKF-45) method. The velocity, concentration, thermal fields and rate of heat transfer are explored for the embedded non-dimensional parameters graphically. Our results revealed that the escalating values of the Marangoni number improve the velocity gradient and reduce the heat transfer. As the values of the porosity parameter increase, the velocity gradient is reduced and the heat transfer is improved. Finally, the Nusselt number is found to decline as the porosity parameter increases.


2021 ◽  
Vol 102 ◽  
pp. 107093
Author(s):  
Rafael Arnay ◽  
Javier Hernández-Aceituno ◽  
Carolina Mallol

2020 ◽  
Vol 12 (1) ◽  
pp. 39-59
Author(s):  
Yohannes Yirga

This paper investigates the boundary layer analysis for magnetohydrodynamic partial slip flow and heat transfer of nanofluids through porous media over a stretching sheet with convective boundary condition. Four types of nanoparticles, namely copper, alumina, copper oxide and titanium oxide in the ethylene glycol (50%, i.e., Pr = 29.86) and water (i.e., Pr = 6.58) based fluids are studied. The governing highly nonlinear and coupled partial differential equations are solved numerically using fourth order Runge-Kutta method with shooting techniques. The velocity and temperature profiles are obtained and utilized to compute the skin friction coefficient and local Nusselt number for different values of the governing parameters viz. nanoparticle volume fraction parameter, magnetic field parameter, porosity parameter, velocity slip parameter and convective parameter. It is found that the velocity distribution of the nanofluids is a decreasing function of the magnetic parameter, porosity parameter, and velocity slip parameter. However, temperature of the nanofluids is an increasing function of magnetic field parameter, nanoparticle volume fraction parameter, porosity parameter, velocity slip parameter and convective parameter. The flow and heat transfer characteristics of the four nanofluids are compared. Moreover, comparison of the numerical results is made with previously published works for special cases and an excellent agreement is found.  Keywords: Magnetohydrodynamics, Partial Slip, Porous medium, Convective boundary, Nanofluid.


Sign in / Sign up

Export Citation Format

Share Document