swelling degree
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 51)

H-INDEX

10
(FIVE YEARS 2)

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 212
Author(s):  
Shuai Zhang ◽  
Yu Wan ◽  
Weijie Yuan ◽  
Yaoxiang Zhang ◽  
Ziyuan Zhou ◽  
...  

Hydrogels are highly hydrophilic polymers that have been used in a wide range of applications. In this study, we prepared PVA–CS/SA–Ca2+ core–shell hydrogels with bilayer space by cross-linking PVA and CS to form a core structure and chelating SA and Ca2+ to form a shell structure to achieve multiple substance loading and multifunctional expression. The morphology and structure of core–shell hydrogels were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The factors affecting the swelling properties of the hydrogel were studied. The results show that the PVA–CS/SA–Ca2+ hydrogel has obvious core and shell structures. The SA concentration and SA/Ca2+ cross-linking time show a positive correlation with the thickness of the shell structure; the PVA/CS mass ratio affects the structural characteristics of the core structure; and a higher CS content indicates the more obvious three-dimensional network structure of the hydrogel. The optimal experimental conditions for the swelling degree of the core–shell hydrogel were an SA concentration of 5%; an SA/Ca2+ cross-linking time of 90 min; a PVA/CS mass ratio of 1:0.7; and a maximum swelling degree of 50 g/g.


Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 27
Author(s):  
Maria Demeter ◽  
Ion Călina ◽  
Anca Scărișoreanu ◽  
Marin Micutz

In the present study, we report on the complex hydrogels formulations based on collagen-poly(vinyl pyrrolidone) (PVP)-poly(ethylene oxide) (PEO) cross-linked by e-beam irradiation in an aqueous polymeric solution, aiming to investigate the influence of different PEO concentrations on the hydrogel properties. The hydrogel networks’ structure and their composition were investigated using equilibrium swelling degree, complex rheological analysis, and FT-IR spectroscopy. Rheological analysis was performed to determine the elastic (G′) and viscous (G″) moduli, the average molecular weight between cross-linking points (Mc), cross-link density (Ve), and the mesh size (ξ). The effect of the PEO concentration on the properties of the hydrogel was investigated as well. Depending on the PEO concentration added in their composition, the hydrogels swelling degree depends on the absorbed dose, being lower at low PEO concentrations. All hydrogel formulations showed higher G′ values (9.8 kPa) compared to G″ values (0.2 kPa), which shows that the hydrogels have a predominantly elastic behavior. They presented stability greater than 72 h in physiological pH buffers and reached equilibrium after 25 h. The Mc parameter is strongly dependent on the PEO concentration and the absorbed dose for all hydrogel compositions. The cross-linking density increased with the absorbed dose.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2079
Author(s):  
Delia Mihaela Rata ◽  
Anca Niculina Cadinoiu ◽  
Marcel Popa ◽  
Leonard Ionut Atanase ◽  
Oana Maria Daraba ◽  
...  

Hydrogels based on natural and synthetic polymers and inorganic nanoparticles proved to be a viable strategy in the fight against some Gram-positive and Gram-negative bacteria. Additionally, numerous studies have demonstrated the advantages of using ZnO nanoparticles in medicine due to their high antibacterial efficacy and relatively low cost. Consequently, the purpose of our study was to incorporate ZnO nanoparticles into chitosan/poly (vinyl alcohol)-based hydrogels in order to obtain a biocomposite with antimicrobial properties. These biocomposite hydrogels, prepared by a double crosslinking (covalent and ionic) were characterized from a structural, morphological, swelling degree, and mechanical point of view. FTIR spectroscopy demonstrated both the apparition of new imine and acetal bonds due to covalent crosslinking and the presence of the sulfate group following ionic crosslinking. The morphology, swelling degree, and mechanical properties of the obtained hydrogels were influenced by both the degree of covalent crosslinking and the amount of ZnO nanoparticles incorporated. In vitro cytotoxicity assessment showed that hydrogels without ZnONPs are non-cytotoxic while the biocomposite hydrogels are weak (with 3% ZnONPs) or moderately (with 4 and 5% ZnONPs) cytotoxic. Compared to nanoparticle-free hydrogels, the biocomposite hydrogels show significant antimicrobial activity against S. aureus, E. coli, and K. pneumonia.


2021 ◽  
Vol 913 (1) ◽  
pp. 012031
Author(s):  
L Pudjiastuti ◽  
N N Sugianto ◽  
A Hamzah ◽  
D R Zuchrillah ◽  
N F Puspita ◽  
...  

Abstract Edible film from cassava starch was successfully synthesized. It was equipped with antimicrobials created from glycerol and lime extract. In this study, edible film will be utilized as food packaging. It was easily produced through simple methods. Cassava starch was mixed with glycerol and lime extract in various concentrations. The effect of dosage concentration of lime extract was studied. The thickness of film, moisture content, swelling degree, solubility, water vapor transmission and biodegradability were also studied. Edible film obtained at 0.25 mm of thickness, the swelling degree did not reach 2%. The biodegradability for seven days was only at 60%. This edible film can be viable option as food packaging


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 189
Author(s):  
Ion Călina ◽  
Maria Demeter ◽  
Anca Scărișoreanu ◽  
Marin Micutz

In this study, several superabsorbent hybrid hydrogel compositions prepared from xanthan gum (XG)/sodium carboxymethylcellulose (CMC)/graphene oxide (GO) were synthesized by e-beam radiation crosslinking. We studied and evaluated the effects of GO content from the chemical structure of the hydrogels according to: sol-gel analysis, swelling degree, diffusion of water, ATR-FTIR spectroscopy, network structure, and dynamic mechanical analysis. The gel fraction and swelling properties of the prepared hydrogels depended on the polymer compositions and the absorbed dose. The hybrid XGCMCGO hydrogels showed superabsorbent capacity and reached equilibrium in less than 6 h. In particular, the XGCMCGO (70:30) hydrogel reached the highest swelling degree of about 6000%, at an irradiation dose of 15 kGy. The magnitude of the elastic (G′) and viscous (G″) moduli were strongly dependent on the absorbed dose. When the degree of crosslinking was higher, the G′ parameter was found to exceed 1000 Pa. In the case of the XGCMCGO (80:20) hydrogel compositions, the Mc and ξ parameters decreased with the absorbed dose, while crosslinking density increased, which demonstrated that we obtained a superabsorbent hydrogel with a permanent structure.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ngoc Linh Nguyen ◽  
Thi My Linh Dang ◽  
Tuan Anh Nguyen ◽  
Hoang Thu Ha ◽  
Thien Vuong Nguyen

This study is aimed at exploring the effects of SiO2 nanoparticles on the crosslinking and mechanical and thermal properties of UV curing acrylic epoxy coating. The curing polymerization process and thermal and mechanical properties of UV-curable acrylate epoxy system have been evaluated with or without the presence of SiO2 nanoparticles. To fabricate the UV curing acrylic epoxy/SiO2 nanocomposite coating, nano-SiO2 particles (0.5–5 wt.% by weight of resin) were added in the photo-curable system using sonication for 3 h. Various techniques for characterization have been used, such as FESEM (field emission scanning electron microscope), FTIR (Fourier-transform infrared spectroscopy), TGA (thermogravimetry analysis), gel fraction, and swelling degree analyses. FESEM data indicated that at the content of 2.5 wt.%, nanosilica was homogeneously dispersed in the coating procedure. However, once added 5 wt.%, large aggregation portions were found inside the coating matrices. Surprisingly, nano-SiO2 could play dual roles, as both UV absorbers and nanoreinforcers, in this nanocomposite coating. Besides, data from FTIR, gel fraction, and swelling degree analyses confirmed the role of SiO2 nanoparticles as UV absorbers that reduced the conversion performance of acrylate double bonds, thus increased slightly the swelling degree of coating. In addition, incorporation of SiO2 nanoparticles (as nanofillers, at content of 2.5 wt.%) in the polymer matrix enhanced significantly the abrasion resistance and thermal stability of the coating, by 60% (from 98.3 to 158.4 lite/mil) and 9°C (from 348°C to 357°C), respectively.


2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Muhammad Fadli ◽  
Al Khausar ◽  
Sofyana Sofyana ◽  
Ummi Fathanah

Polyethersulfone (PES) is a membrane forming material that has many advantages but is hydrophobic, so it is necessary to add other materials, such as composite PES with Polyvinylpyrrolidone (PVP) and chitosan. The addition of PVP aims to change the nature of the PES membrane to be hydrophilic and the addition of chitosan aims to improve the mechanical properties of the polymer. The purpose of this study was to study the effect of adding PVP and chitosan to the characteristics of PES membranes. The membranes were made using a phase inversion technique by immersion precipitation with a concentration of 20% PES, 1% PVP, and chitosan were varied, namely 0% (M0 membrane), 1.5% (M1), 2% (M2), and 3% (M3). The results of the permeability test showed that the membranes M0, M1, M2, and M3 are classified as nanofiltration membranes with Lp values of 9.1237, 7.618, 6.9651, and 4.4077 L/m2.h.bar. The swelling degree value is 61,512; 103.111; 145,564; and 158.610% and the overall porosity value is 22.892; 32.360; 80.726; and 117.016%. The SEM test showed that the morphology of the membrane changed its structure as the concentration of chitosan increased. The FTIR test on the membrane showed that there were absorption bands, each of which identified its functional group.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3388
Author(s):  
Simona Dordevic ◽  
Dani Dordevic ◽  
Petr Sedlacek ◽  
Michal Kalina ◽  
Karolina Tesikova ◽  
...  

The aim of the research was to produce edible packaging based on chitosan with the addition of various concentrations of extracts of blueberry, red grape and parsley marcs. Packaging was made from extrudate extracts, which were subsequently analyzed by physicochemical methods: zeta-potential, gas barrier properties, thickness, water content, solubility, swelling degree, textural properties, total polyphenol content (TPC), polyphenols by high pressure liquid chromatography (HPLC), antioxidant activity, attenuated total reflectance Fourier-Transform spectroscopy (FTIR), antimicrobial activity and determination of migration of bioactive substances. The results indicate that a higher content of plant extracts have a statistically significant (p < 0.05) influence on properties of experimentally produced edible films. Edible films produced with the highest concentrations of red grapes marc extracts showed the most advantageous properties since antimicrobial activity against E. coli were the highest in this kind of produced film. The physical properties of edible films were also improved by the addition of extracts; gas permeability toward oxygen can be defined as advantageous, as can swelling degree, which decreased with higher concentrations of extracts. The research emphasized the possibility to use plant foodstuffs by-products in the production of edible/biodegradable films, helping in the overall sustainability and eco-friendliness of food/package production.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3084
Author(s):  
Ayatzhan Akhmetzhan ◽  
Nurgeldi Abeu ◽  
Sotirios Nik. Longinos ◽  
Ayezkhan Tashenov ◽  
Nurbala Myrzakhmetova ◽  
...  

In this work, a hydrogel system was produced via radical polymerization of N,N-dimethylacrylamide and 2-acrylamido-2-methylpropanesulfonic acid in the presence of N,N-methylene-bis-acrylamide as a crosslinker and ammonium persulfate as an initiator. Parameters that impact the conversion of copolymerization (such as initial concentration of monomers, temperature, initiator dose, and time) were studied. The swelling degree of the hydrogel was investigated with the addition of a crosslinker and initiator at different pH levels. A hydrogel with high conversion and high swelling degree was selected to investigate their ability for adsorption of Pb(II) ions from solutions. Adsorption behavior of Pb(II) ions in a hydrogel was examined as a function of reaction time and concentration of lead ions from a solution of Pb(II) ions.


2021 ◽  
Vol 8 (1) ◽  
pp. 32
Author(s):  
Sperisa Distantina ◽  
Saktika Rofi’ah Haryani ◽  
Rif’ah Ulfatun Hasanah ◽  
Mujtahid Kaavessina
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document