grapevine decline
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 1)

OENO One ◽  
2021 ◽  
Vol 55 (3) ◽  
Author(s):  
Romain Darriaut ◽  
Guilherme Martins ◽  
Coralie Dewasme ◽  
Séverine Mary ◽  
Guillaume Darrieutort ◽  
...  

Grapevine decline is a top concern in viticulture worldwide and is often associated with many biotic and abiotic factors. Grape trunk diseases and viruses are some of the most frequently identified causes of vine dieback. However, a decline is sometimes observed when no mineral deficiency or excess, or pathogenic causes can be identified. Soil enzymatic and microbial activities are relevant bio-indicators since they are known to influence vine health. Grapevine associated microbiota, linked to vine fitness, is known to be influenced by soil microbiota coming from the microbial pool inhabiting the vineyard. This work describes the microbial diversity and activity of four different vineyard plots of the Bordeaux region, selected due to the presence of localised declining areas unexplained yet by disease symptoms. Soils were sampled in declining areas and areas within the same plot showing no decline symptoms, during autumn and spring periods. Significant differences in enzymatic activities, microbial biomass and activity were found among soils even if those soils presented quite similar physicochemical characteristics that could not explain these observed declines. The results of enzymatic assays distinguished patterns in autumn and spring periods with an overall greater enzymatic activity in soils from non-declining areas. This work suggests that soils displaying decline symptoms present a dysbiosis in functionality and diversity which is linked to vine health.


Author(s):  
Mansoureh Mirabolfathy ◽  
Laleh Hosseinian ◽  
Samira Peighami Ashnaei

2019 ◽  
Vol 154 (3) ◽  
pp. 787-799 ◽  
Author(s):  
Farnaz Abed-Ashtiani ◽  
Abolfazl Narmani ◽  
Mahdi Arzanlou
Keyword(s):  

2019 ◽  
Vol 15 ◽  
pp. 01027 ◽  
Author(s):  
D.S. Akgül ◽  
M. Ahioğlu

Young grapevine decline is a common and important disease caused by fungal plant pathogens in Turkey vineyards. Every year many grape growers face this problem in their vineyards and seek solutions to cope with it. The aims of the study were to examine fungal pathogens of young grapevine decline in Southern Turkey and to determine pathogenicity of fungi involved in the disease. Twenty vineyards (2–3 years-old, located in Adana, Mersin and Gaziantep cities) were surveyed in March 2018 and declining whole plants were sampled and processed for mycological procedures. Sub-cultured fungal colonies were examined for colony morphology and conidia-conidiophore shapes under light microscope. For molecular identification, ITS, beta-tubulin, histone and TEF1-alpha gene regions were amplified with PCR using appropriate primers and PCR products were subsequently sequenced. The sequences were compared with those deposited in the NCBI GenBank database using the BLASTn program and fungal identifications were confirmed by getting accession numbers. Pathogenicity tests were fulfilled under greenhouse conditions for two months. The results indicated that Botryosphaeria Dieback and Black Foot fungi were two most common pathogen groups, while Petri Disease and Diaporthe Dieback pathogens had minor incidence. Although a variety of Fusarium species were isolated from declined vines, only F. brachygibbosum and F. solani were found to have considerable role in disease occurrence.


2017 ◽  
Vol 83 (24) ◽  
Author(s):  
José Manuel Álvarez-Pérez ◽  
Sandra González-García ◽  
Rebeca Cobos ◽  
Miguel Ángel Olego ◽  
Ana Ibañez ◽  
...  

ABSTRACT Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata, whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora, and P. minimum, all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries. IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the root system. Although different strategies have recently been developed to protect pruning wounds using antifungal compounds (natural or synthetic) or biocontrol agents, no tools are yet available for controlling soil pathogens that infect plants through their root system. This study shows that different actinobacterial isolates, when applied to grafts in a nursery, can significantly reduce the infection rate caused by fungal pathogens that enter through the root system. This is a new, promising, and green alternative for preventing the decline of young grapevines in nurseries and vineyards.


2017 ◽  
Vol 25 (2) ◽  
pp. 355-365
Author(s):  
K. Hemida ◽  
E. Ziedan ◽  
M. El-Saman ◽  
M. El-Naggar ◽  
H Mostafa
Keyword(s):  

2017 ◽  
Vol 165 (7-8) ◽  
pp. 407-413 ◽  
Author(s):  
Maryam Ghayeb Zamharir ◽  
Samanta Paltrinieri ◽  
Shokrollah Hajivand ◽  
Mahdi Taheri ◽  
Assunta Bertaccini

Sign in / Sign up

Export Citation Format

Share Document