silicon nitride membrane
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Takehiko Ichikawa ◽  
Dong Wang ◽  
Keisuke Miyazawa ◽  
Kazuki Miyata ◽  
Masanobu Oshima ◽  
...  

Abstract Chemical fixations have been thought to preserve the structures of the cells or tissues. However, given that the fixatives create crosslinks or aggregate proteins, there is a possibility that these fixatives create nanoscale artefacts by aggregation of membrane proteins which move around freely to some extent on the cell surface. Despite this, little research has been conducted about this problem, probably because there has been no method for observing cell surface structures at the nanoscale. In this study, we have developed a new method to observe cell surfaces stably and with high resolution using atomic force microscopy and a microporous silicon nitride membrane. We demonstrate that the size of the protrusions on the cell surface is increased after treatment with three commonly used fixatives and show that these protrusions were created by the aggregation of membrane proteins by fixatives. These results call attention when observing fixed cell surfaces at the nanoscale.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 880
Author(s):  
David Hoch ◽  
Kevin-Jeremy Haas ◽  
Leopold Moller ◽  
Timo Sommer ◽  
Pedro Soubelet ◽  
...  

Visualizing eigenmodes is crucial in understanding the behavior of state-of-the-art micromechanical devices. We demonstrate a method to optically map multiple modes of mechanical structures simultaneously. The fast and robust method, based on a modified phase-lock loop, is demonstrated on a silicon nitride membrane and shown to outperform three alternative approaches. Line traces and two-dimensional maps of different modes are acquired. The high quality data enables us to determine the weights of individual contributions in superpositions of degenerate modes.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 754
Author(s):  
Myeong-Su Ahn ◽  
Jaehun Jeon ◽  
Kyung-Won Jang ◽  
Ki-Hun Jeong

A large-area and ultrathin MEMS (microelectromechanical system) mirror can provide efficient light-coupling, a large scanning area, and high energy efficiency for actuation. However, the ultrathin mirror is significantly vulnerable to diverse film deformation due to residual thin film stresses, so that high flatness of the mirror is hardly achieved. Here, we report a MEMS mirror of large-area and ultrathin membrane with high flatness by using the silicon rim microstructure (SRM). The ultrathin MEMS mirror with SRM (SRM-mirror) consists of aluminum (Al) deposited silicon nitride membrane, bimorph actuator, and the SRM. The SRM is simply fabricated underneath the silicon nitride membrane, and thus effectively inhibits the tensile stress relaxation of the membrane. As a result, the membrane has high flatness of 10.6 m−1 film curvature at minimum without any deformation. The electrothermal actuation of the SRM-mirror shows large tilting angles from 15° to −45° depending on the applied DC voltage of 0~4 VDC, preserving high flatness of the tilting membrane. This stable and statically actuated SRM-mirror spurs diverse micro-optic applications such as optical sensing, beam alignment, or optical switching.


2021 ◽  
Vol 118 (10) ◽  
pp. e2017616118
Author(s):  
Vida Jamali ◽  
Cory Hargus ◽  
Assaf Ben-Moshe ◽  
Amirali Aghazadeh ◽  
Hyun Dong Ha ◽  
...  

The motion of nanoparticles near surfaces is of fundamental importance in physics, biology, and chemistry. Liquid cell transmission electron microscopy (LCTEM) is a promising technique for studying motion of nanoparticles with high spatial resolution. Yet, the lack of understanding of how the electron beam of the microscope affects the particle motion has held back advancement in using LCTEM for in situ single nanoparticle and macromolecule tracking at interfaces. Here, we experimentally studied the motion of a model system of gold nanoparticles dispersed in water and moving adjacent to the silicon nitride membrane of a commercial LC in a broad range of electron beam dose rates. We find that the nanoparticles exhibit anomalous diffusive behavior modulated by the electron beam dose rate. We characterized the anomalous diffusion of nanoparticles in LCTEM using a convolutional deep neural-network model and canonical statistical tests. The results demonstrate that the nanoparticle motion is governed by fractional Brownian motion at low dose rates, resembling diffusion in a viscoelastic medium, and continuous-time random walk at high dose rates, resembling diffusion on an energy landscape with pinning sites. Both behaviors can be explained by the presence of silanol molecular species on the surface of the silicon nitride membrane and the ionic species in solution formed by radiolysis of water in presence of the electron beam.


2021 ◽  
Author(s):  
Franciele Silva Mendes de Oliveira ◽  
Maurício Jesuíno Nogueira ◽  
Zacarias Eduardo Fabrim ◽  
Paulo F P Fichtner

Abstract Room temperature 200 keV electron irradiation effects on the area retraction behavior presented by 6.75 nm thick Au thin films deposited over a self-standing SiO 2 / silicon nitride membrane are investigated as a function of the irradiation fluence Φ. The as-deposited films already contain void discontinuities. The void growth behavior is investigated considering irradiation and thermally-induced surface atoms’ migration. The film’s coverage area A(Φ) and void perimeter P(Φ), obtained via Transmission Electron Microscopy observations, allow for calculating the atomic displacement causing the area retraction. This data is compared with model calculations of irradiation and thermally-induced atomic fluxes. The results demonstrate that the balance between the thermal and irradiation processes strongly depends on the choice of the surface thermal diffusivity values, which present large discrepancies in the literature. Our results suggest that irradiation-induced atomic displacements follow the same thermodynamic driving forces acting in thermal processes. The work also discloses a new method to investigate surface atoms’ behavior and promote microstructural modifications at room or lower temperatures.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael A. Page ◽  
Maxim Goryachev ◽  
Haixing Miao ◽  
Yanbei Chen ◽  
Yiqiu Ma ◽  
...  

AbstractGravitational waves from the neutron star coalescence GW170817 were observed from the inspiral, but not the high frequency postmerger nuclear matter motion. Optomechanical white light signal recycling has been proposed for achieving broadband sensitivity in gravitational wave detectors, but has been reliant on development of suitable ultra-low loss mechanical components. Here we show demonstrated optomechanical resonators that meet loss requirements for a white light signal recycling interferometer with strain sensitivity below 10−24 Hz−1/2 at a few kHz. Experimental data for two resonators are combined with analytic models of interferometers similar to LIGO to demonstrate enhancement across a broader band of frequencies versus dual-recycled Fabry-Perot Michelson detectors. Candidate resonators are a silicon nitride membrane acoustically isolated by a phononic crystal, and a single-crystal quartz acoustic cavity. Optical power requirements favour the membrane resonator, while thermal noise performance favours the quartz resonator. Both could be implemented as add-on components to existing detectors.


2020 ◽  
Vol 27 (6) ◽  
pp. 1703-1706
Author(s):  
D. P. Siddons ◽  
A. J. Kuczewski ◽  
A. K. Rumaiz ◽  
R. Tappero ◽  
M. Idir ◽  
...  

The design and construction of an instrument for full-field imaging of the X-ray fluorescence emitted by a fully illuminated sample are presented. The aim is to produce an X-ray microscope with a few micrometers spatial resolution, which does not need to scan the sample. Since the fluorescence from a spatially inhomogeneous sample may contain many fluorescence lines, the optic which will provide the magnification of the emissions must be achromatic, i.e. its optical properties must be energy-independent. The only optics which fulfill this requirement in the X-ray regime are mirrors and pinholes. The throughput of a simple pinhole is very low, so the concept of coded apertures is an attractive extension which improves the throughput by having many pinholes, and retains the achromatic property. Modified uniformly redundant arrays (MURAs) with 10 µm openings and 50% open area have been fabricated using gold in a lithographic technique, fabricated on a 1 µm-thick silicon nitride membrane. The gold is 25 µm thick, offering good contrast up to 20 keV. The silicon nitride is transparent down into the soft X-ray region. MURAs with various orders, from 19 up to 73, as well as their respective negative (a mask where open and closed positions are inversed compared with the original mask), have been made. Having both signs of mask will reduce near-field artifacts and make it possible to correct for any lack of contrast.


2020 ◽  
Author(s):  
Vida Jamali ◽  
Cory Hargus ◽  
Assaf Ben Moshe ◽  
Amirali Aghazadeh ◽  
Hyun Dong Ha ◽  
...  

The motion of nanoparticles near surfaces is of fundamental importance in physics, biology, and chemistry. Liquid cell transmission electron microscopy (LCTEM) is a promising technique for studying motion of nanoparticles with high spatial resolution. Yet, the lack of understanding of how the electron beam of the microscope affects the particle motion has held back advancement in using LCTEM for in situ single nanoparticle and macromolecule tracking at interfaces. Here, we experimentally studied the motion of a model system of gold nanoparticles dispersed in water and moving adjacent to the silicon nitride membrane of a commercial liquid cell in a broad range of electron beam dose rates. We find that the nanoparticles exhibit anomalous diffusive behavior modulated by the electron beam dose rate. We characterized the anomalous diffusion of nanoparticles in LCTEM using a convolutional deep neural network model and canonical statistical tests. The results demonstrate that the nanoparticle motion is governed by fractional Brownian motion at low dose rates, resembling diffusion in a viscoelastic medium, and continuous time random walk at high dose rates, resembling diffusion on an energy landscape with pinning sites. Both behaviors can be explained by the presence of silanol molecular species on the surface of the silicon nitride membrane and the ionic species in solution formed by radiolysis of water in presence of the electron beam.


2020 ◽  
Author(s):  
Vida Jamali ◽  
Cory Hargus ◽  
Assaf Ben Moshe ◽  
Amirali Aghazadeh ◽  
Hyun Dong Ha ◽  
...  

The motion of nanoparticles near surfaces is of fundamental importance in physics, biology, and chemistry. Liquid cell transmission electron microscopy (LCTEM) is a promising technique for studying motion of nanoparticles with high spatial resolution. Yet, the lack of understanding of how the electron beam of the microscope affects the particle motion has held back advancement in using LCTEM for in situ single nanoparticle and macromolecule tracking at interfaces. Here, we experimentally studied the motion of a model system of gold nanoparticles dispersed in water and moving adjacent to the silicon nitride membrane of a commercial liquid cell in a broad range of electron beam dose rates. We find that the nanoparticles exhibit anomalous diffusive behavior modulated by the electron beam dose rate. We characterized the anomalous diffusion of nanoparticles in LCTEM using a convolutional deep neural network model and canonical statistical tests. The results demonstrate that the nanoparticle motion is governed by fractional Brownian motion at low dose rates, resembling diffusion in a viscoelastic medium, and continuous time random walk at high dose rates, resembling diffusion on an energy landscape with pinning sites. Both behaviors can be explained by the presence of silanol molecular species on the surface of the silicon nitride membrane and the ionic species in solution formed by radiolysis of water in presence of the electron beam.


2020 ◽  
Author(s):  
Vida Jamali ◽  
Cory Hargus ◽  
Assaf Ben Moshe ◽  
Amirali Aghazadeh ◽  
Hyun Dong Ha ◽  
...  

The motion of nanoparticles near surfaces is of fundamental importance in physics, biology, and chemistry. Liquid cell transmission electron microscopy (LCTEM) is a promising technique for studying motion of nanoparticles with high spatial resolution. Yet, the lack of understanding of how the electron beam of the microscope affects the particle motion has held back advancement in using LCTEM for in situ single nanoparticle and macromolecule tracking at interfaces. Here, we experimentally studied the motion of a model system of gold nanoparticles dispersed in water and moving adjacent to the silicon nitride membrane of a commercial liquid cell in a broad range of electron beam dose rates. We find that the nanoparticles exhibit anomalous diffusive behavior modulated by the electron beam dose rate. We characterized the anomalous diffusion of nanoparticles in LCTEM using a convolutional deep neural network model and canonical statistical tests. The results demonstrate that the nanoparticle motion is governed by fractional Brownian motion at low dose rates, resembling diffusion in a viscoelastic medium, and continuous time random walk at high dose rates, resembling diffusion on an energy landscape with pinning sites. Both behaviors can be explained by the presence of silanol molecular species on the surface of the silicon nitride membrane and the ionic species in solution formed by radiolysis of water in presence of the electron beam.


Sign in / Sign up

Export Citation Format

Share Document