singlet exciton
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 57)

H-INDEX

47
(FIVE YEARS 6)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexander J. Gillett ◽  
Claire Tonnelé ◽  
Giacomo Londi ◽  
Gaetano Ricci ◽  
Manon Catherin ◽  
...  

AbstractEngineering a low singlet-triplet energy gap (ΔEST) is necessary for efficient reverse intersystem crossing (rISC) in delayed fluorescence (DF) organic semiconductors but results in a small radiative rate that limits performance in LEDs. Here, we study a model DF material, BF2, that exhibits a strong optical absorption (absorption coefficient = 3.8 × 105 cm−1) and a relatively large ΔEST of 0.2 eV. In isolated BF2 molecules, intramolecular rISC is slow (delayed lifetime = 260 μs), but in aggregated films, BF2 generates intermolecular charge transfer (inter-CT) states on picosecond timescales. In contrast to the microsecond intramolecular rISC that is promoted by spin-orbit interactions in most isolated DF molecules, photoluminescence-detected magnetic resonance shows that these inter-CT states undergo rISC mediated by hyperfine interactions on a ~24 ns timescale and have an average electron-hole separation of ≥1.5 nm. Transfer back to the emissive singlet exciton then enables efficient DF and LED operation. Thus, access to these inter-CT states, which is possible even at low BF2 doping concentrations of 4 wt%, resolves the conflicting requirements of fast radiative emission and low ΔEST in organic DF emitters.


Author(s):  
Swati J. N. Dixit ◽  
Ankur A. Awasthi ◽  
Kuttay R. S. Chandrakumar ◽  
Biswajit Manna ◽  
Neeraj Agarwal

2021 ◽  
Author(s):  
Leonardo Evaristo de Sousa ◽  
Larissa dos Santos Born ◽  
Pedro Henrique de Oliveira Neto ◽  
Piotr de Silva

2021 ◽  
Vol 7 (26) ◽  
pp. eabg0869
Author(s):  
Hélène Seiler ◽  
Marcin Krynski ◽  
Daniela Zahn ◽  
Sebastian Hammer ◽  
Yoav William Windsor ◽  
...  

Singlet exciton fission (SEF) is a key process for developing efficient optoelectronic devices. An aspect rarely probed directly, yet with tremendous impact on SEF properties, is the nuclear structure and dynamics involved in this process. Here, we directly observe the nuclear dynamics accompanying the SEF process in single crystal pentacene using femtosecond electron diffraction. The data reveal coherent atomic motions at 1 THz, incoherent motions, and an anisotropic lattice distortion representing the polaronic character of the triplet excitons. Combining molecular dynamics simulations, time-dependent density-functional theory, and experimental structure factor analysis, the coherent motions are identified as collective sliding motions of the pentacene molecules along their long axis. Such motions modify the excitonic coupling between adjacent molecules. Our findings reveal that long-range motions play a decisive part in the electronic decoupling of the electronically correlated triplet pairs and shed light on why SEF occurs on ultrafast time scales.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
E. Paris ◽  
C. W. Nicholson ◽  
S. Johnston ◽  
Y. Tseng ◽  
M. Rumo ◽  
...  

AbstractInvestigations of magnetically ordered phases on the femtosecond timescale have provided significant insights into the influence of charge and lattice degrees of freedom on the magnetic sub-system. However, short-range magnetic correlations occurring in the absence of long-range order, for example in spin-frustrated systems, are inaccessible to many ultrafast techniques. Here, we show how time-resolved resonant inelastic X-ray scattering (trRIXS) is capable of probing such short-ranged magnetic dynamics in a charge-transfer insulator through the detection of a Zhang–Rice singlet exciton. Utilizing trRIXS measurements at the O K-edge, and in combination with model calculations, we probe the short-range spin correlations in the frustrated spin chain material CuGeO3 following photo-excitation, revealing a strong coupling between the local lattice and spin sub-systems.


Author(s):  
Angelar K. Muthike ◽  
Benedetta Carlotti ◽  
Ifeanyi K. Madu ◽  
Hanjie Jiang ◽  
Hyungjun Kim ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1058
Author(s):  
Lei Hou ◽  
Philippe Tamarat ◽  
Brahim Lounis

Lead-halide perovskite nanocrystals (NCs) are attractive nano-building blocks for photovoltaics and optoelectronic devices as well as quantum light sources. Such developments require a better knowledge of the fundamental electronic and optical properties of the band-edge exciton, whose fine structure has long been debated. In this review, we give an overview of recent magneto-optical spectroscopic studies revealing the entire excitonic fine structure and relaxation mechanisms in these materials, using a single-NC approach to get rid of their inhomogeneities in morphology and crystal structure. We highlight the prominent role of the electron-hole exchange interaction in the order and splitting of the bright triplet and dark singlet exciton sublevels and discuss the effects of size, shape anisotropy and dielectric screening on the fine structure. The spectral and temporal manifestations of thermal mixing between bright and dark excitons allows extracting the specific nature and strength of the exciton–phonon coupling, which provides an explanation for their remarkably bright photoluminescence at low temperature although the ground exciton state is optically inactive. We also decipher the spectroscopic characteristics of other charge complexes whose recombination contributes to photoluminescence. With the rich knowledge gained from these experiments, we provide some perspectives on perovskite NCs as quantum light sources.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tobias Scharff ◽  
Wolfram Ratzke ◽  
Jonas Zipfel ◽  
Philippe Klemm ◽  
Sebastian Bange ◽  
...  

AbstractAt low temperatures and high magnetic fields, electron and hole spins in an organic light-emitting diode become polarized so that recombination preferentially forms molecular triplet excited-state species. For low device currents, magnetoelectroluminescence perfectly follows Boltzmann activation, implying a virtually complete polarization outcome. As the current increases, the magnetoelectroluminescence effect is reduced because spin polarization is suppressed by the reduction in carrier residence time within the device. Under these conditions, an additional field-dependent process affecting the spin-dependent recombination emerges, possibly related to the build-up of triplet excitons and their interaction with free charge carriers. Suppression of the EL alone does not prove electronic spin polarization. We therefore probe changes in the spin statistics of recombination directly in a dual singlet-triplet emitting material, which shows a concomitant rise in phosphorescence intensity as fluorescence is suppressed. Finite spin-orbit coupling in these materials gives rise to a microscopic distribution in effective g-factors of electrons and holes, Δg, i.e., a distribution in Larmor frequencies. This Δg effect in the pair, which mixes singlet and triplet, further suppresses singlet-exciton formation at high fields in addition to thermal spin polarization of the individual carriers.


Sign in / Sign up

Export Citation Format

Share Document