electronic spin
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 62)

H-INDEX

44
(FIVE YEARS 5)

2022 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Isaac B. Bersuker

In this semi-review paper, we show that the multiferroic properties of perovskite ABO3 crystals with B(dn), n > 0, centers are fully controlled by the influence of the electronic spin on the local dipolar instability that triggers the spontaneous polarization of the crystal. Contrary to the widespread statements, the multiferroicity of these crystals does not emerge due to the addition of unpaired electrons (carrying magnetic moments) to the spontaneously polarizing crystal; the spin states themselves are an important part of the local electronic structure that determines the very possibility of the spontaneous polarization. This conclusion emerges from vibronic theory, in which the ferroelectricity is due to the cooperative interaction of the local dipolar distortions induced by the pseudo-Jahn-Teller effect (PJTE). The latter requires sufficiently strong vibronic coupling between ground and excited electronic states with opposite parity but the same spin multiplicity. The detailed electronic structure of the octahedral [B(dn)O6] center in the molecular orbital presentation shows how this requirement plays into the dependence of the possible perovskite magnetic, ferroelectric, and multiferroic properties on the number of d electrons, provided the criterion of the PJTE is obeyed. Revealed in detail, the role of the electronic spin in all these properties and their combination opens novel possibilities for their manipulation by means of external perturbations and exploration. In particular, it is shown that by employing the well-known spin-crossover phenomenon, a series of novel effects become possible, including magnetic-ferroelectric (multiferroic) crossover with electric-multiferroic, magnetic-ferroelectric, and magneto-electric effects, some of which have already been observed experimentally.


2022 ◽  
Vol 34 (2) ◽  
pp. 311-318
Author(s):  
S. Gautam ◽  
P. Pipil ◽  
A. Kumar ◽  
Alka ◽  
J. Singh ◽  
...  

Manganese and cobalt complexes have been designed and prepared with a tetradentate ligand i.e. isopthalic acid-bis(thiosemicarbozone) (IPBT), which bind to metal ions via donor atoms present in ligand. Different spectroscopic techniques viz. nuclear magnetic resonance, infra red, mass, electronic spin resonance and analytical studies have been used to determine the chemical composition of synthesized IPBT and its Mn(II) and Co(II) complexes. The spectroscopic data exposed that IPBT behaves in a tetradentate (N2S2) mode by having ability to bind with metal ions through N2S2 atoms. An octahedral structure for manganese and cobalt complexes has been suggested on the basis of spectroscopic as well as analytical studies. The ligand (IPBT) and its metal(II) complexes have been screened to determine their antipathogenic activity against some selective microorganisms S. aureus, P. aeruginosa, E. coli, A. niger, M. phasolina and P. glomerata. In this experimental work, well diffusion and poisoned food techniques have been introduced for screening purpose and as standard drugs neomycin and chlorothalonil have been used. Data for antipathogenic screening exposed that metal complexes exerted higher activity towards all examined microbes (bacteria and fungi) even than ligand.


2021 ◽  
Vol 1 (2) ◽  
pp. 9-17
Author(s):  
Timothy Chibueze ◽  
Fabian Ezema

The search for spin injectors and spin sources in spintronic devices is a significant facet of materials research today. Consequently, half-Heusler (HAH) KMnGe alloy has been recommended as one such admissible materials. Herein, a rigorous examination of the structural, magnetic and electronic properties of HAH KMnGe alloy is done using ab initio method within the bolstered up rendition of the functional by Perdew and his group. Our result shows that HAH KmnGe alloy expresses type-1 and type-2 HAH  structural ground state at high and low pressures respectively, which may pose a challenge in application. Impressively, HAH KMnGe alloy exhibits half metallic characteristic with an indirect energy gap in the Γ-X symmetry k-point and direct band gap at X-point in the minority electronic spin states for type-1 and type-2 phase respectively. Our findings agree fundamentally with some previous findings in the literature and suggests that the HAH KMnGe alloy is a credible excellent spin source in future spintronic devices.


2021 ◽  
Author(s):  
◽  
Robin Gühne

<p>The three-dimensional topological insulators Bi₂Se₃ and Bi₂Te₃ are model systems of a new class of materials with an insulating bulk and gapless surface states. Their small band gaps and the heavy elements are essential for the topologically non-trivial band structure, but these features are similarly responsible for other remarkable properties, such as their high thermoelectric performance.  This thesis investigates the electronic properties of the topological insulators Bi₂Se₃ and Bi₂Te₃ with a broad range of experimental methods. Ferromagnetism in Mn doped Bi₂Te₃ is shown to disappear under sample sintering. A surprisingly large magnetoresistance and a charge carrier independent change in the sign of the thermopower with increasing Mn content are discussed.¹²⁵Te nuclear magnetic resonance (NMR) of Bi₂Te₃ single crystals suggest an unusual electronic spin susceptibility and complex NMR shifts. The quadrupole interaction of ²⁰⁹Bi nuclei in Bi₂Se₃ single crystals is shown to be a signature of the band inversion in quantitative agreement with first-principle calculations. Furthermore, it is proposed that the strong spin-orbit coupling of conduction electrons causes a non-trivial orientation dependent quadrupole splitting of the ²⁰⁹Bi resonance.</p>


2021 ◽  
Author(s):  
◽  
Jibu Stephen

<p>Half-metallic ferromagnets with 100 % electronic spin polarisation are an interesting class of materials for new spin transport electronics applications. Some of the double perovskites and Heusler alloys are predicted to be half-metallic with Curie temperatures above room temperature. This thesis presents the results from an experimental study of polycrystalline double perovskites Sr₂₋ₓLaₓFeMoO₆ and Ba₂₋ₓLaₓFeMoO₆, and ordered and disordered epitaxial thin films of Co₂MnSi Heusler alloys. A magnetothermopower was observed in Sr₂₋ₓLaₓFeMoO₆ and Ba₂₋ₓLaₓFeMoO₆. This magnetothermopower can be explained in terms of a spin-tunnelling contribution to the thermopower between grains that changes in an applied magnetic field. The results from the high temperature (above 400 K) magnetisation studies on Ba₂₋ₓLaₓFeMoO₆ in the paramagnetic region reveal that a localised electron model with antiferromagnetic coupling to itinerant electrons can account for the carrier concentration dependent effective moments. The correlation between the bare itinerant electron susceptibility and the Curie-Weiss temperature supports the kinetic energy driven model that has been used to account for the electronic spin polarisation and high Curie temperatures.  Antisite disorder is evident in the Co₂MnSi thin films that leads to a reduction in the saturation magnetisation. The resistivity of the ordered Co₂MnSi thin film is linear in temperature whereas the resistivity of the disordered film increases at low temperature due to weak localisation. A magnetoresistance is observed in ordered and disordered films. At low fields (below 0.1 T) the magnetoresistance is likely to be due to domain wall scattering. For magnetic fields greater than 0.1 T there is likely to be a contribution from a magnetic-field-induced suppression of the weak localisation resistivity. Similar magnetoresistance behaviour was observed for ordered and disordered films. There is a large anomalous Hall resistivity observed in the ordered and disordered Co₂MnSi thin films. In the case of the ordered film it is found that the anomalous Hall effect is dominated by skew scattering.</p>


2021 ◽  
Author(s):  
◽  
Robin Gühne

<p>The three-dimensional topological insulators Bi₂Se₃ and Bi₂Te₃ are model systems of a new class of materials with an insulating bulk and gapless surface states. Their small band gaps and the heavy elements are essential for the topologically non-trivial band structure, but these features are similarly responsible for other remarkable properties, such as their high thermoelectric performance.  This thesis investigates the electronic properties of the topological insulators Bi₂Se₃ and Bi₂Te₃ with a broad range of experimental methods. Ferromagnetism in Mn doped Bi₂Te₃ is shown to disappear under sample sintering. A surprisingly large magnetoresistance and a charge carrier independent change in the sign of the thermopower with increasing Mn content are discussed.¹²⁵Te nuclear magnetic resonance (NMR) of Bi₂Te₃ single crystals suggest an unusual electronic spin susceptibility and complex NMR shifts. The quadrupole interaction of ²⁰⁹Bi nuclei in Bi₂Se₃ single crystals is shown to be a signature of the band inversion in quantitative agreement with first-principle calculations. Furthermore, it is proposed that the strong spin-orbit coupling of conduction electrons causes a non-trivial orientation dependent quadrupole splitting of the ²⁰⁹Bi resonance.</p>


2021 ◽  
Author(s):  
◽  
Jibu Stephen

<p>Half-metallic ferromagnets with 100 % electronic spin polarisation are an interesting class of materials for new spin transport electronics applications. Some of the double perovskites and Heusler alloys are predicted to be half-metallic with Curie temperatures above room temperature. This thesis presents the results from an experimental study of polycrystalline double perovskites Sr₂₋ₓLaₓFeMoO₆ and Ba₂₋ₓLaₓFeMoO₆, and ordered and disordered epitaxial thin films of Co₂MnSi Heusler alloys. A magnetothermopower was observed in Sr₂₋ₓLaₓFeMoO₆ and Ba₂₋ₓLaₓFeMoO₆. This magnetothermopower can be explained in terms of a spin-tunnelling contribution to the thermopower between grains that changes in an applied magnetic field. The results from the high temperature (above 400 K) magnetisation studies on Ba₂₋ₓLaₓFeMoO₆ in the paramagnetic region reveal that a localised electron model with antiferromagnetic coupling to itinerant electrons can account for the carrier concentration dependent effective moments. The correlation between the bare itinerant electron susceptibility and the Curie-Weiss temperature supports the kinetic energy driven model that has been used to account for the electronic spin polarisation and high Curie temperatures.  Antisite disorder is evident in the Co₂MnSi thin films that leads to a reduction in the saturation magnetisation. The resistivity of the ordered Co₂MnSi thin film is linear in temperature whereas the resistivity of the disordered film increases at low temperature due to weak localisation. A magnetoresistance is observed in ordered and disordered films. At low fields (below 0.1 T) the magnetoresistance is likely to be due to domain wall scattering. For magnetic fields greater than 0.1 T there is likely to be a contribution from a magnetic-field-induced suppression of the weak localisation resistivity. Similar magnetoresistance behaviour was observed for ordered and disordered films. There is a large anomalous Hall resistivity observed in the ordered and disordered Co₂MnSi thin films. In the case of the ordered film it is found that the anomalous Hall effect is dominated by skew scattering.</p>


Author(s):  
Violeta Nikolaeva Ivanova-Rohling ◽  
Guido Burkard ◽  
Niklas Rohling

Abstract We present a framework that formulates the quest for the most efficient quantum state tomography measurement set as an optimization problem which can be solved numerically, where the optimization goal is the maximization of the information gain. This approach can be applied to a broad spectrum of relevant setups including measurements restricted to a subsystem. To illustrate the power of this method we present results for the six-dimensional Hilbert space constituted by a qubit-qutrit system, which could be realized e.g. by the N-14 nuclear spin-1 and two electronic spin states of a nitrogen-vacancy center in diamond. Measurements of the qubit subsystem are expressed by projectors of rank three, i.e., projectors on half-dimensional subspaces. For systems consisting only of qubits, it was shown analytically that a set of projectors on half-dimensional subspaces can be arranged in an informationally optimal fashion for quantum state tomography, thus forming so-called mutually unbiased subspaces. Our method goes beyond qubits-only systems and we find that in dimension six such a set of mutually-unbiased subspaces can be approximated with a deviation irrelevant for practical applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Y. Hayashi ◽  
Y. Okamura ◽  
N. Kanazawa ◽  
T. Yu ◽  
T. Koretsune ◽  
...  

AbstractPhysics of Weyl electrons has been attracting considerable interests and further accelerated by recent discoveries of giant anomalous Hall effect (AHE) and topological Hall effect (THE) in several magnetic systems including non-coplanar magnets with spin chirality or small-size skyrmions. These AHEs/THEs are often attributed to the intense Berry curvature generated around the Weyl nodes accompanied by band anti-crossings, yet the direct experimental evidence still remains elusive. Here, we demonstrate an essential role of the band anti-crossing for the giant AHE and THE in MnGe thin film by using the terahertz magneto-optical spectroscopy. The low-energy resonance structures around ~ 1.2 meV in the optical Hall conductivity show the enhanced AHE and THE, indicating the emergence of at least two distinct anti-crossings near the Fermi level. The theoretical analysis demonstrates that the competition of these resonances with opposite signs is a cause of the strong temperature and magnetic-field dependences of observed DC Hall conductivity. These results lead to the comprehensive understanding of the interplay among the transport phenomena, optical responses and electronic/spin structures.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Tanish Satoor ◽  
Aurélien Fabre ◽  
Jean-Baptiste Bouhiron ◽  
Alexandre Evrard ◽  
Raphael Lopes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document