repeat content
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 66)

H-INDEX

9
(FIVE YEARS 5)

2021 ◽  
Vol 12 ◽  
Author(s):  
Rebecca Caroline Ulbricht Ferreira ◽  
Aline da Costa Lima Moraes ◽  
Lucimara Chiari ◽  
Rosangela Maria Simeão ◽  
Bianca Baccili Zanotto Vigna ◽  
...  

Pastures based on perennial monocotyledonous plants are the principal source of nutrition for ruminant livestock in tropical and subtropical areas across the globe. The Urochloa genus comprises important species used in pastures, and these mainly include Urochloa brizantha, Urochloa decumbens, Urochloa humidicola, and Urochloa ruziziensis. Despite their economic relevance, there is an absence of genomic-level information for these species, and this lack is mainly due to genomic complexity, including polyploidy, high heterozygosity, and genomes with a high repeat content, which hinders advances in molecular approaches to genetic improvement. Next-generation sequencing techniques have enabled the recent release of reference genomes, genetic linkage maps, and transcriptome sequences, and this information helps improve our understanding of the genetic architecture and molecular mechanisms involved in relevant traits, such as the apomictic reproductive mode. However, more concerted research efforts are still needed to characterize germplasm resources and identify molecular markers and genes associated with target traits. In addition, the implementation of genomic selection and gene editing is needed to reduce the breeding time and expenditure. In this review, we highlight the importance and characteristics of the four main species of Urochloa used in pastures and discuss the current findings from genetic and genomic studies and research gaps that should be addressed in future research.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaofeng Cai ◽  
Xuepeng Sun ◽  
Chenxi Xu ◽  
Honghe Sun ◽  
Xiaoli Wang ◽  
...  

AbstractSpinach is a nutritious leafy vegetable belonging to the family Chenopodiaceae. Here we report a high-quality chromosome-scale reference genome assembly of spinach and genome resequencing of 305 cultivated and wild spinach accessions. Reconstruction of ancestral Chenopodiaceae karyotype indicates substantial genome rearrangements in spinach after its divergence from ancestral Chenopodiaceae, coinciding with high repeat content in the spinach genome. Population genomic analyses provide insights into spinach genetic diversity and population differentiation. Genome-wide association studies of 20 agronomical traits identify numerous significantly associated regions and candidate genes for these traits. Domestication sweeps in the spinach genome are identified, some of which are associated with important traits (e.g., leaf phenotype, bolting and flowering), demonstrating the role of artificial selection in shaping spinach phenotypic evolution. This study provides not only insights into the spinach evolution and domestication but also valuable resources for facilitating spinach breeding.


2021 ◽  
Author(s):  
Hailey Spier Camposano ◽  
Christopher A Saski ◽  
William Molin

The discovery of non-chromosomal circular DNA offers new directions in linking genome structure with function in plant biology.  Glyphosate resistance through  EPSPS  gene copy amplification in Palmer amaranth was due to an autonomously replicating extra-chromosomal circular DNA mechanism (eccDNA).  CIDER-Seq analysis of geographically distant glyphosate sensitive (GS) and resistant (GR) Palmer Amaranth ( Amaranthus palmeri ) revealed the presence of numerous small extra-chromosomal circular DNAs varying in size and with degrees of repetitive content, coding sequence, and motifs associated with autonomous replication. In GS biotypes, only a small portion of these aligned to the 399 kb eccDNA replicon, the vehicle underlying gene amplification and genetic resistance to the herbicide glyphosate. The aligned eccDNAs from GS were separated from one another by large gaps in sequence. In GR biotypes, the eccDNAs were present in both abundance and diversity to assemble into a nearly complete eccDNA replicon.  Mean sizes of eccDNAs were similar in both biotypes and were around 5kb with larger eccDNAs near 25kb.  Gene content for eccDNAs ranged from 0 to 3 with functions that include ribosomal proteins, transport, metabolism, and general stress response genetic elements. Repeat content among smaller eccDNAs indicate a potential for recombination into larger structures. Genomic hotspots were also identified in the Palmer amaranth genome with a disposition for gene focal amplifications as eccDNA. The presence of eccDNA may serve as a reservoir of genetic heterogeneity in this species and may be functionally important for survival.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009449
Author(s):  
Shahab Sarmashghi ◽  
Metin Balaban ◽  
Eleonora Rachtman ◽  
Behrouz Touri ◽  
Siavash Mirarab ◽  
...  

The cost of sequencing the genome is dropping at a much faster rate compared to assembling and finishing the genome. The use of lightly sampled genomes (genome-skims) could be transformative for genomic ecology, and results using k-mers have shown the advantage of this approach in identification and phylogenetic placement of eukaryotic species. Here, we revisit the basic question of estimating genomic parameters such as genome length, coverage, and repeat structure, focusing specifically on estimating the k-mer repeat spectrum. We show using a mix of theoretical and empirical analysis that there are fundamental limitations to estimating the k-mer spectra due to ill-conditioned systems, and that has implications for other genomic parameters. We get around this problem using a novel constrained optimization approach (Spline Linear Programming), where the constraints are learned empirically. On reads simulated at 1X coverage from 66 genomes, our method, REPeat SPECTra Estimation (RESPECT), had < 1.5% error in length estimation compared to 34% error previously achieved. In shotgun sequenced read samples with contaminants, RESPECT length estimates had median error 4%, in contrast to other methods that had median error 80%. Together, the results suggest that low-pass genomic sequencing can yield reliable estimates of the length and repeat content of the genome. The RESPECT software will be publicly available at https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_shahab-2Dsarmashghi_RESPECT.git&d=DwIGAw&c=-35OiAkTchMrZOngvJPOeA&r=ZozViWvD1E8PorCkfwYKYQMVKFoEcqLFm4Tg49XnPcA&m=f-xS8GMHKckknkc7Xpp8FJYw_ltUwz5frOw1a5pJ81EpdTOK8xhbYmrN4ZxniM96&s=717o8hLR1JmHFpRPSWG6xdUQTikyUjicjkipjFsKG4w&e=.


2021 ◽  
Author(s):  
Roger Huerlimann ◽  
Jeff A Cowley ◽  
Nicholas M Wade ◽  
Yinan Wang ◽  
Naga Kasinadhuni ◽  
...  

Shrimp are a valuable aquaculture species globally; however, disease remains a major hindrance to shrimp aquaculture sustainability and growth. Mechanisms mediated by endogenous viral elements (EVEs) have been proposed as a means by which shrimp that encounter a new virus start to accommodate rather than succumb to infection over time. However, evidence on the nature of such EVEs and how they mediate viral accommodation is limited. More extensive genomic data on Penaeid shrimp from different geographical locations should assist in exposing the diversity of EVEs. In this context, reported here is a PacBio Sequel-based draft genome assembly of an Australian black tiger shrimp (Penaeus monodon) inbred for one generation. The 1.89 Gbp draft genome is comprised of 31,922 scaffolds (N50: 496,398 bp) covering 85.9% of the projected genome size. The genome repeat content (61.8% with 30% representing simple sequence repeats) is almost the highest identified for any species. The functional annotation identified 35,517 gene models, of which 25,809 were protein-coding and 17,158 were annotated using interproscan. Scaffold scanning for specific EVEs identified an element comprised of a 9,045 bp stretch of repeated, inverted and jumbled genome fragments of Infectious hypodermal and hematopoietic necrosis virus (IHHNV) bounded by a repeated 591/590 bp host sequence. As only near complete linear ~4 kb IHHNV genomes have been found integrated in the genome of P. monodon previously, its discovery has implications regarding the validity of PCR tests designed to specifically detect such linear EVE types. The existence of conjoined inverted IHHNV genome fragments also provides a means by which hairpin dsRNAs could be expressed and processed by the shrimp RNA interference (RNAi) machinery.


2021 ◽  
Author(s):  
Ran Tian ◽  
Han Guo ◽  
Chen Yang ◽  
Guangyi Fan ◽  
Sarah L. Whiteley ◽  
...  

Australia is remarkable for its lizard diversity, with very high endemicity because of continental-scale diversification and adaptive radiation. We employed 10X Genomics Chromium linked-reads technology to generate male and female draft genomes of the jacky dragon (Amphibolurus muricatus), an Australian dragon lizard (family Agamidae). The assemblies are 1.8 Gb in size and have a repeat content (38%) and GC content (42%) similar to other dragon lizards. The contig N50 values for the assemblies were 37.2 kb (female) and 28.8 kb (male), with corresponding scaffold N50 values of 720.5 kb and 369 kb. The longest scaffold was 6.5 Mb in each assembly. The BUSCO completeness percentages were 92.2% and 90.8% respectively. These statistics are comparable to other lizard genomes assembled using similar technology. Phylogenetic comparisons show that Australian dragon lizard species split from a common ancestor around 33.4 million years ago. The draft A. muricatus assemblies will be a valuable resource for understanding lizard sex determination and the evolution and conservation of Australian dragon lizards.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 891
Author(s):  
Lan Lan ◽  
Peng Shi ◽  
Huali Song ◽  
Xiangyou Tang ◽  
Jianyang Zhou ◽  
...  

Apis cerana abansis, widely distributed in the southeastern margin of the Qinghai-Tibet Plateau, is considered an excellent model to study the phenotype and genetic variation for highland adaptation of Asian honeybee. Herein, we assembled and annotated the chromosome-scale assembly genome of A. cerana abansis with the help of PacBio, Illumina and Hi-C sequencing technologies in order to identify the genome differences between the A. cerana abansis and the published genomes of different A. cerana strains. The sequencing methods, assembly and annotation strategies of A. cerana abansis were more comprehensive than previously published A. cerana genomes. Then, the intraspecific genetic diversity of A. cerana was revealed at the genomic level. We re-identified the repeat content in the genome of A. cerana abansis, as well as the other three A. cerana strains. The chemosensory and immune-related proteins in different A. cerana strains were carefully re-identified, so that 132 odorant receptor subfamilies, 12 gustatory receptor subfamilies and 22 immune-related pathways were found. We also discovered that, compared with other published genomes, the A. ceranaabansis lost the largest number of chemoreceptors compared to other strains, and hypothesized that gene loss/gain might help different A. cerana strains to adapt to their respective environments. Our work contains more complete and precise assembly and annotation results for the A. cerana genome, thus providing a resource for subsequent in-depth related studies.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuang Wu ◽  
Jinyuan Chen ◽  
Ying Li ◽  
Ai Liu ◽  
Ao Li ◽  
...  

Abstract Background Although plastomes are highly conserved with respect to gene content and order in most photosynthetic angiosperms, extensive genomic rearrangements have been reported in Fabaceae, particularly within the inverted repeat lacking clade (IRLC) of Papilionoideae. Two hypotheses, i.e., the absence of the IR and the increased repeat content, have been proposed to affect the stability of plastomes. However, this is still unclear for the IRLC species. Here, we aimed to investigate the relationships between repeat content and the degree of genomic rearrangements in plastomes of Medicago and its relatives Trigonella and Melilotus, which are nested firmly within the IRLC. Results We detected abundant repetitive elements and extensive genomic rearrangements in the 75 newly assembled plastomes of 20 species, including gene loss, intron loss and gain, pseudogenization, tRNA duplication, inversion, and a second independent IR gain (IR ~ 15 kb in Melilotus dentata) in addition to the previous first reported cases in Medicago minima. We also conducted comparative genomic analysis to evaluate plastome evolution. Our results indicated that the overall repeat content is positively correlated with the degree of genomic rearrangements. Some of the genomic rearrangements were found to be directly linked with repetitive sequences. Tandem repeated sequences have been detected in the three genes with accelerated substitution rates (i.e., accD, clpP, and ycf1) and their length variation could be explained by the insertions of tandem repeats. The repeat contents of the three localized hypermutation regions around these three genes with accelerated substitution rates are also significantly higher than that of the remaining plastome sequences. Conclusions Our results suggest that IR reemergence in the IRLC species does not ensure their plastome stability. Instead, repeat-mediated illegitimate recombination is the major mechanism leading to genome instability, a pattern in agreement with recent findings in other angiosperm lineages. The plastome data generated herein provide valuable genomic resources for further investigating the plastome evolution in legumes.


2021 ◽  
Author(s):  
Jean-Marc Aury ◽  
Stefan Engelen ◽  
Benjamin Istace ◽  
Cécile Monat ◽  
Pauline Lasserre-Zuber ◽  
...  

AbstractThe sequencing of the wheat (Triticum aestivum) genome has been a methodological challenge for many years due to its large size (15.5 Gb), repeat content, and hexaploidy. Many initiatives aiming at obtaining a reference genome of cultivar Chinese Spring have been launched in the past years and it was achieved in 2018 as the result of a huge effort to combine short-read whole genome sequencing with many other resources. Reference-quality genome assemblies were then produced for other accessions but the rapid evolution of sequencing technologies offers opportunities to reach high-quality standards at lower cost. Here, we report on an optimized procedure based on long-reads produced on the ONT (Oxford Nanopore Technology) PromethION device to assemble the genome of the French bread wheat cultivar Renan. We provide the most contiguous and complete chromosome-scale assembly of a bread wheat genome to date, a resource that will be valuable for the crop community and will facilitate the rapid selection of agronomically important traits. We also provide the methodological standards to generate high-quality assemblies of complex genomes.


2021 ◽  
Author(s):  
Gokalp Yildirir ◽  
Jana Sperschneider ◽  
Mathu C Malar ◽  
Eric CH Chen ◽  
Wataru Iwasaki ◽  
...  

Chromosome folding links genome structure with gene function by generating distinct nuclear compartments and topologically associating domains (TADs). In mammals, these domains undergo preferential interactions and regulate gene expression, however in fungi the role of chromosome folding in genome biology is unclear. Here, we combine Nanopore (ONT) sequencing with chromatin conformation capture sequencing (Hi-C) to reveal chromosome diversity in a group of obligate plant symbionts with a multinucleate mycelium; the arbuscular mycorrhizal fungi (AMF). We find that phylogenetically distinct strains of the model AMF Rhizophagus irregularis all carry 33 chromosomes. Homologous chromosomes show within species variability in size, as well as in gene and repeat content. Strain-specific Hi-C sequencing reveals that all strains have a 3D genome organization that resembles a checkerboard structure with two distinct (A/B) chromatin compartments. Each compartment differs in the level of gene transcription, regulation of candidate effectors and methylation rate. The A-compartment is more gene-dense and contains most core genes, while the B-compartment is more repeat-rich and has higher rates of chromosomal rearrangement. While the B-compartment is transcriptionally repressed, it has significantly more secreted proteins and in planta up-regulated candidate effectors suggesting a possible host-induced change in chromosome conformation. Overall, this study provides a fine-scale view into the genome biology and evolution of prominent plant symbionts, and opens avenues to study the mechanisms that generate and modify chromosome folding during host-microbe interactions.


Sign in / Sign up

Export Citation Format

Share Document