michael reactions
Recently Published Documents


TOTAL DOCUMENTS

870
(FIVE YEARS 55)

H-INDEX

64
(FIVE YEARS 4)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Nagaraju Kerru ◽  
Suresh Maddila ◽  
Sreekantha B. Jonnalagadda

Abstract Organocatalysis has occupied sustainable position in organic synthesis as a powerful tool for the synthesis of enantiomeric-rich compounds with multiple stereogenic centers. Among the various organic molecules for organocatalysis, the formation of carbon–carbon is viewed as a challenging issue in organic synthesis. The asymmetric aldol and Michael addition reactions are the most significant methods for C–C bond forming reactions. These protocols deliver a valuable path to access chiral molecules, which are useful synthetic hybrids in biologically potent candidates and desirable versatile pharmaceutical intermediates. This work highlighted the impact of organocatalytic aldol and Michael addition reactions in abundant solvent media. It focused on the crucial methods to construct valuable molecules with high enantio- and diastereo-selectivity.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7303
Author(s):  
Mariola Zielińska-Błajet ◽  
Żaneta A. Mała ◽  
Rafał Kowalczyk

By varying the steric and electronic surroundings of the hydrogen-bonding motif, the novel chiral Cinchona-alkaloid based selenoureas were developed. Acting as bifunctional catalysts, they were applied in the Michael reactions of dithiomalonate and nitrostyrene providing chiral adducts with up to 96% ee. The asymmetric Michael–-hemiacetalization reaction of benzylidene pyruvate and dimedone, performed with the assistance of 5 mol% of selenoureas, furnished the product with up to 93% ee and excellent yields. The effectiveness of the new hydrogen-bond donors was also proved in solvent-free reactions under ball mill conditions, supporting the sustainability of the devised catalytic protocol.


2021 ◽  
Vol 6 (44) ◽  
pp. 12424-12430
Author(s):  
S. Fatemeh Mohammadi Metkazini ◽  
Akbar Heydari

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6902
Author(s):  
Leon Hoppmann ◽  
Olga García Mancheño

Mukaiyama aldol, Mannich, and Michael reactions are arguably amongst the most important C–C bond formation processes and enable access to highly relevant building blocks of various natural products. Their vinylogous extensions display equally high potential in the formation of important key intermediates featuring even higher functionalization possibilities through an additional conjugated C–C double bond. Hence, it is much desired to develop highly selective vinylogous methods in order to enable unconventional, more efficient asymmetric syntheses of biologically active compounds. In this regard, silyl-dienolates were discovered to display high regioselectivities due to their tendency toward γ-additions. The control of the enantio- and diastereoinduction of these processes have been for a long time dominated by transition metal catalysis, but it received serious competition by the application of organocatalytic approaches since the beginning of this century. In this review, the organocatalytic applications of silyl-dienolates in asymmetric vinylogous C–C bond formations are summarized, focusing on their scope, characteristics, and limitations.


2021 ◽  
Vol 17 ◽  
pp. 2585-2610
Author(s):  
Pratibha Sharma ◽  
Raakhi Gupta ◽  
Raj Kumar Bansal

Nitrogen-containing scaffolds are ubiquitous in nature and constitute an important class of building blocks in organic synthesis. The asymmetric aza-Michael reaction (aza-MR) alone or in tandem with other organic reaction(s) is an important synthetic tool to form new C–N bond(s) leading to developing new libraries of diverse types of bioactive nitrogen compounds. The synthesis and application of a variety of organocatalysts for accomplishing highly useful organic syntheses without causing environmental pollution in compliance with ‘Green Chemistry” has been a landmark development in the recent past. Application of many of these organocatalysts has been extended to asymmetric aza-MR during the last two decades. The present article overviews the literature published during the last 10 years concerning the asymmetric aza-MR of amines and amides catalysed by organocatalysts. Both types of the organocatalysts, i.e., those acting through non-covalent interactions and those working through covalent bond formation have been applied for the asymmetric aza-MR. Thus, the review includes the examples wherein cinchona alkaloids, squaramides, chiral amines, phase-transfer catalysts and chiral bifunctional thioureas have been used, which activate the substrates through hydrogen bond formation. Most of these reactions are accompanied by high yields and enantiomeric excesses. On the other hand, N-heterocyclic carbenes and chiral pyrrolidine derivatives acting through covalent bond formation such as the iminium ions with the substrates have also been included. Wherever possible, a comparison has been made between the efficacies of various organocatalysts in asymmetric aza-MR.


2021 ◽  
Vol 16 (10) ◽  
pp. 1934578X2110498
Author(s):  
Hisahiro Hagiwara

Recent advances in the total syntheses of cyclic natural products and related compounds from 2005 to 2021, which employ domino Michael reactions as key steps, have been reviewed, focusing mainly on the domino Michael reactions catalyzed by organocatalysts.


2021 ◽  
Vol 14 (8) ◽  
pp. 779
Author(s):  
Kena Zhang ◽  
Christine Tran ◽  
Mouad Alami ◽  
Abdallah Hamze ◽  
Olivier Provot

This review concerns the synthesis and biological activities of pyrazino[1,2-a]indoles and pyrazino[1,2-a]indol-1-ones reported since 1997 and the discovery of biological activity of pyrazinoindole derivatives. In the first part, we first presented the synthetic routes that have been reported from a methodological point of view to access the pyrazinoindole unit according to cyclization reactions using or not using metal catalysts. Then, syntheses and neuropsychiatric, auto-immune, anti-infectious and anti-cancer properties of pyrazinoindoles were detailed. In the second part, we first reported the main accesses to pyrazinoindol-1-one substrates according to Michael reactions, metal-catalyzed and metal-free cyclization reactions. The syntheses and anti-cancer, anti-infectious, anti-allergenic and neuropsychiatric properties of pyrazinoindolones were next described and discussed.


Sign in / Sign up

Export Citation Format

Share Document