bistatic scattering
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 34)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Can Suer ◽  
Daniel J. Breton ◽  
Caitlin E. Haedrich ◽  
Roger Lang

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xuerui Wu ◽  
Andrés Calabia ◽  
Jin Xu ◽  
Weihua Bai ◽  
Peng Guo

AbstractIn recent years, signal of opportunity reflectometry (SoOp-R) has become a promising remote sensing technique. This emerging technique employs the reflected signals from existing Global Navigation Satellite System (GNSS) or communication satellites to estimate geophysical parameters for Earth observation, such as wind speed, altimetry, significant wave height, soil moisture, etc. While its application for forest canopy monitoring is still in the initial stage, there are still many unknown relations between vegetation parameters and actual observations, and a proper theoretical basis needs to be established for simulation and analysis of the different observation geometries. In this paper, we develop a bistatic scattering model with various polarizations at different frequency bands. Our improved model is based on the first-order radiative transfer equation, and is developed based on the wave synthesis technique, after which it can be used for circular polarization signals in bistatic radar systems, i.e. the typical configuration of SoOp-R. We analyze the simulations of the P (0.25–0.5 GHz), L (0.5–1.5 GHz), C (4–8 GHz), and X (8–12 GHz) bands at the backscattering, specular cone, bistatic scattering, and perpendicular planes. The contributions of the different components to the total scattering are also analyzed. The results show that the coherent scattering at the specular cone is larger than the non-coherent scattering, while trunk-dominated forest canopy has strong scattering at the aforementioned different directions. Variations of canopy parameters such as trunk and branch diameters, tree density, and vegetation water content are also simulated at the specular cone plane, showing strong dependence on the final bistatic scattering observation. The simulation results show that the SoOp-R technique has a great potential for monitoring of canopy parameters.


Author(s):  
Runze Xue ◽  
Rui Duan ◽  
Yuanliang Ma ◽  
Kunde Yang

The elevation of ocean waves is always modeled in linear theory as a superposition of the sinusoidal components with crests and troughs of identical heights. However, under some circumstances, the wave amplitude is outside the linear range and presents as a weakly nonlinear asymmetrical waveform with sharper crests and shallower troughs. We studied the impact of the weakly nonlinear effect of ocean waves in deep and intermediate waters on acoustic scattering from the surface of the ocean using two rough surface models with fractal geometry and power law spectral behavior in the equilibrium range. The classic Weierstrass–Mandelbrot function was used to model the linear waves and a new fractal function, the fractional Weierstrass function developed in studies of electromagnetism, was used to model the weakly nonlinear waves. We evaluated these two models using the Pierson–Moskowitz spectrum and the incident wavelength. The bistatic scattering strength was obtained via a numerical method based on the “exact” solution of the integral equation. The weakly nonlinear phenomenon led to a very small reduction in the narrow area around the specular reflection angle and a small increase in the remaining wide area, including the backpropagation area with a scattering angle [Formula: see text]. The differences in backscattering strength between the two models were similar to the bistatic scattering strength in the backpropagation area and did not depend on the incident grazing angle.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xuerui Wu ◽  
Yezhi Song ◽  
Jin Xu ◽  
Zheng Duan ◽  
Shuanggen Jin

AbstractSignals of Opportunity Reflectometry (SoOp-R) employs the communication system, GNSS (Global Navigation Satellite System) constellation and other potential Signals of Opportunity (SoOp) as the transmitters. In recent years, it has gained increased interests. Several experiments have been carried out, however it is still in the initial development stage. Theoretical predictions of SoOp Reflectometry for land surface parameters detection, such as soil moisture and vegetation biomass, should be carried out simultaneously. Meanwhile, at present less works are paid attention to the polarization study of the polarizations. The first-order radiative transfer equation models are employed here and they are developed according to the wave synthesis technique to get the various polarization combinations. Using the two models as analysis tools, we simulate the bistatic scattering at all potential SoOp Reflectometry bands, i.e., P-, L-, C- and X-band for circular polarizations and linear polarizations. While the original commonly used microwave scattering models are linear polarizations, here we compare the difference. Although the models can simulate bistatic scattering at any incident angles and scattering angles. Four special observation geometry are taken into considerations during the analysis. Using the developed models as tools, the developed models establish the relationship between the land surface parameters (such as soil moisture, soil roughness and vegetation water content, diameters et al.) and bistatic radar cross section. The forward scattering models developed here enables the understanding of the effects of different geophysical parameters and transmitter–receiver observation scenarios on the bisatic scattering at any polarization combinations for any potential SoOP reflectometry bands. Robust retrieval methods for soil moisture and vegetation biomass can benefit from the forward scattering models.


2021 ◽  
Vol 13 (2) ◽  
pp. 188
Author(s):  
Tingting Li ◽  
Irena Hajnsek ◽  
Kun-Shan Chen

Soil moisture is one of the vital environmental variables in the land–atmosphere cycle. A study of the sensitivity analysis of bistatic scattering coefficients from bare soil at the Ku-band is presented, with the aim of deepening our understanding of the bistatic scattering features and exploring its potential in soil moisture retrieval. First, a well-established advanced integral method was adopted for simulating the bistatic scattering response of bare soil. Secondly, a sensitivity index and a normalized weight quality index were proposed to evaluate the effect of soil moisture on the bistatic scattering coefficient in terms of polarization and angular diversity, and the combinations thereof. The results of single-polarized VV data show that the regions with the maximum sensitivity and high quality index, simultaneously, to soil moisture are in the forward off-specular direction. However, due to the effect of surface roughness and surface autocorrelation function (ACF), the single-polarized data have some limitations for soil moisture inversion. By contrast, the results of two different polarization combinations, as well as a dual-angular simulation of one transmitter and two receivers, show significant estimation benefits. It can be seen that they all provide better ACF suppression capabilities, larger high-sensitivity area, and higher quality indices compared to single-polarized estimation. In addition, dual polarization or dual angular combined measurement provides the possibility of retrieving soil moisture in backward regions. These results are expected to contribute to the design of future bistatic observation systems.


Sign in / Sign up

Export Citation Format

Share Document