air movement
Recently Published Documents


TOTAL DOCUMENTS

445
(FIVE YEARS 70)

H-INDEX

35
(FIVE YEARS 4)

2022 ◽  
Vol 45 ◽  
pp. 103410
Author(s):  
Wei Yu ◽  
Yixi Zhou ◽  
Baizhan Li ◽  
Liyang Ruan ◽  
Yue Zhang ◽  
...  

2021 ◽  
Vol 16 (3) ◽  
pp. 774-793
Author(s):  
Nur Baitul Izati Rasli ◽  
Nor Azam Ramli ◽  
Mohd Rodzi Ismail

This study observed the influence of different ventilation, indoor and outdoor activities (i.e., cooking, praying, sweeping, gathering, and exhaust from motorcycle) between a bungalow house (i.e., stack and cross ventilation applications) and a terrace house (i.e., one-sided ventilation application). We appraised the indoor air quality (IAQ) and thermal comfort. We monitored the indoor air contaminants (i.e., TVOC, CO, CH2O, PM10, O3, and CO2) and specific physical parameters (i.e., T, RH, and AS) for four days in the morning (i.e., 6.00 a.m. – 9.00 a.m.), morning-evening (i.e., 11.00 a.m. – 2.00 p.m.), and evening-night (i.e., 5.00 p.m. – 8.00 p.m.) sessions. The results found that cooking activities are the major activities that contributed to the increase of the TVOC, CO, PM10, O3, and CO2 concentrations in the bungalow and terrace houses. However, IAQ exceeded the Industry Code of Practice on IAQ (ICOP) limit in the terrace house. The bungalow house applies stack and cross ventilation, double area, and a long pathway of indoor air contaminants movements. Besides that, the results indicated that cooking activities worsen the ventilation system because CO2 exceeded the ICOP limit on Day 2 at 74.1 % (evening-night session) and Day 3 at 13.2 % (morning session), 11% (morning-evening session), and 50.1 % (evening-night session). Moreover, the combination of mechanical (i.e., opened all fans) and natural ventilation (i.e., opened all doors, windows, and fans) is the best application in the house without a cooking ventilator with lower indoor air movement. Furthermore, the temperatures exceeding the ICOP limit of 23-26 °C for both bungalow and terrace houses could be lower indoor air movement, which is less than the ICOP limit of 0.15-0.5 m/s and high outdoor air temperature. Therefore, it is prudent to have an efficient ventilation system for acceptable indoor air quality and thermal comfort in the family house.


2021 ◽  
Vol 11 (2) ◽  
pp. 72-81
Author(s):  
Sandra Rodríguez-Trejo ◽  
Víctor Fuentes-Freixanet

In recent years, energy consumption from electrical devices to foster air movement in regions with warm climates has risen, with the resulting negative impact on the environment. The purpose of this paper is to evaluate the performance of a solar chimney used to induce natural ventilation in a closed space, under the weather conditions of the hot humid Mexican climate. For this purpose, CFD simulations were run using the RNG k- ɛ turbulence model and the DO radiation model, considering only natural convection phenomena. The solar chimney performance was evaluated, comparing the results of the simulations with experimental measurements, analysis which showed a good match. Temperatures of up to 46.5%°C in the air within the chimney, and of 77.1°C on the absorption plate, were obtained, results that allow verifying the influence of the heat discharge phenomenon by the natural flotation of air in the chimney.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8159
Author(s):  
Edyta Dudkiewicz ◽  
Marta Laska ◽  
Natalia Fidorów-Kaprawy

Research towards understanding the relationship between maintaining thermal comfort and energy efficiency in the public utility buildings was undertaken among 323 1st year students during class hours. Questionnaires surveys and measurements of indoor conditions were performed. The article identified students’ sensations and perceptions concerning indoor conditions. Temperature, relative humidity, air velocity and CO2 concentration measured to assess room conditions showed that the auditorium had almost comfortable conditions according to the literature guidelines. The indices used to assess students’ perceptions were: Thermal Sensation Vote (TSV), Thermal Preference Vote (TPV), Air Freshness Sensation Vote (AfSV), Air Movement Preference Vote (AmPV), and Relative Humidity Preference Vote (RHPV). The interpretation of these indicators showed that while the students’ requests for temperature changes and increased air movement are adequate for the air conditions in the room, the evaluation of stuffiness and requests for changes in humidity levels are surprising. Striving uncritically to meet the desired room parameters, according to the users votes, can lead to deterioration of the air and not only the increase in energy consumption but even waste it. Better understanding of users’ preferences and behaviour and further application of this knowledge indirectly aim at increasing energy efficiency in buildings.


2021 ◽  
pp. 85-116
Author(s):  
Léa Perraudin ◽  
Iva Rešetar ◽  
Clemens Winkler
Keyword(s):  
The Body ◽  

Author(s):  
A.S. Zelinskiy ◽  
G.A. Yakovlev

In this paper, a simulation of the distribution of radon progeny over the height of the atmosphere, depending on the amount of turbulent mixing and the vertical air velocity, is presented. The obtained results are compared with the change in the activity ratio of Bi-214/Pb-214 isotopes recorded in rainwater during 3-year observations in Prague. It is found that the reasons for the most common values of Bi-214/Pb-214 can be the height of the lower edge of the cloud of 0.2-1.4 km and the vertical air velocity of 0.1 – 0.2 m / s. The ratio changes slightly from changes in the turbulent mixing, the value of the vertical air movement makes the main contribution. It is found that with the increase in the intensity of rain, a shift in the radioactive equilibrium should occur due to an increase in the velocity of vertical air. Atmospheric inversion is able to balance the volumetric activities of the descendants of atmospheric radon, atmospheric inversion can be identified by the equality between the activities of the radon progeny in the atmosphere at different altitudes or in rainwater. It is shown that the search for the relationship between precipitation intensity and gamma radiation is expose to error, without taking into account the influence of the АBi−214/АPb−214 ratio, due to the unequal activities of the atmospheric isotopes Bi-214 and Pb-214. This error of 7-14% when using gamma radiometry, and of 5-9% when using dosimeters is estimated. олучены результаты моделирования распределения дочерних продуктов радона в атмосферном столбе по высоте, объясняющие изменение концентраций радионуклидов в дождевой воде в зависимости от высоты нижней кромки облаков. Значения соотношений активностей АBi−214/АPb−214 радионуклидов дождевой воды от 0.6 до 0.8, могут возникать при высоте нижней кромки облаков от 0.2 до 1.4 км и адвекции от 0.1 до 0.2 м/с соответственно. Произведена оценка шибки от 7 до 14%, возникающая при использовании гамма радиометров, и от 5 до 9% — дозиметров, во время осадков с целью поиска корреляции роста гамма-фона и интенсивности жидких ливневых осадков.


Author(s):  
Josh Foster ◽  
James W. Smallcombe ◽  
Simon Hodder ◽  
Ollie Jay ◽  
Andreas D. Flouris ◽  
...  

Abstract Increasing air movement can alleviate or exacerbate occupational heat strain, but the impact is not well defined across a wide range of hot environments, with different clothing levels. Therefore, we combined a large empirical study with a physical model of human heat transfer to determine the climates where increased air movement (with electric fans) provides effective body cooling. The model allowed us to generate practical advice using a high-resolution matrix of temperature and humidity. The empirical study involved a total of 300 1-h work trials in a variety of environments (35, 40, 45, and 50 °C, with 20 up to 80% relative humidity) with and without simulated wind (3.5 vs 0.2 m∙s−1), and wearing either minimal clothing or a full body work coverall. Our data provides compelling evidence that the impact of fans is strongly determined by air temperature and humidity. When air temperature is ≥ 35 °C, fans are ineffective and potentially harmful when relative humidity is below 50%. Our simulated data also show the climates where high wind/fans are beneficial or harmful, considering heat acclimation, age, and wind speed. Using unified weather indices, the impact of air movement is well captured by the universal thermal climate index, but not by wet-bulb globe temperature and aspirated wet-bulb temperature. Overall, the data from this study can inform new guidance for major public and occupational health agencies, potentially maintaining health and productivity in a warming climate.


2021 ◽  
Vol 926 (1) ◽  
pp. 012056
Author(s):  
P Fitriaty ◽  
A J R Bassaleng ◽  
N R Burhany ◽  
R Mardin ◽  
A Setiawan ◽  
...  

Abstract The settlement of Vatutela village’s in Tondo hills Palu has only one road access with a linear residential pattern following the topography. This situation affects the pattern of wind flowing through the settlement areas, which is undoubtedly affecting the house’s temperature and humidity profile and influencing thermal comfort of the occupants. The research was conducted to visualise the pattern of the wind flow entering the house through openings in the perspective of building’s thermal performance. The method used to visualise the air movement was the smoke decay method. The method was performed in two scaled dwelling Models representing brick-constructed houses and wood-constructed raised floor houses in Vatutela village. The smoke decay result is elaborated with the results of microclimate measurements using Hobo data loggers to analyse the thermal condition in the houses. The results showed that a design strategy is needed to achieve a thermal comfort zone in both types of houses. The design strategy can be in the form of the arrangement of openings and additional building elements, such as adding ceilings, fins, sunscreens. Additionally, the opening placement, width, and type should be reconsidered for the houses in the area according to houses’ plan and section. This study is expected to give a visual evidence of wind pattern in a naturally ventilated house with a three-layers plan.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
James F. Sutcliffe ◽  
Shaoman Yin

Abstract Background Until recently, relatively little research has been done on how mosquitoes behave around the occupied bed net in the indoor environment. This has been partly remedied in the last few years through laboratory and field studies, most of these using video methods and mosquito flight tracking. Despite these recent advances, understanding of the mosquito-bed net environment system, and the principles that underlie mosquito behaviour within it, is limited. This project aimed to further understand this system by studying the effects of gently moving air (such as might be introduced through room design to make the indoor environment more comfortable and conducive to ITN use) and warmer vs. cooler ambient conditions on mosquito activity around ITNs and other bed nets. Methods The activity of colonized female Anopheles gambiae around an occupied untreated bed net set up in a mosquito-proof tent in a large laboratory space was recorded under different ambient conditions using a laser detection-video recording system. Conditions tested were ‘cool’ (23–25 °C) and ‘warm’ (27–30 °C) air temperatures and the presence or absence of a cross-flow produced by a small central processing unit (CPU) fan pointed at the side of the net so that it produced a ‘low-’ or ‘high-’ speed cross-draught (approx. 0.1 and 0.4 m/s, respectively). Near-net activity in recordings was measured using video image analysis. Results In cool, still air conditions, more than 80% of near-net activity by An. gambiae occurred on the net roof. Introduction of the low-speed or high-speed cross-draught resulted in an almost total drop off in roof activity within 1 to 2 min and, in the case of the high-speed cross-draught, a complementary increase in activity on the net side. In warm, still conditions, near-net activity appeared to be lower overall than in cool, still air conditions and to be relatively less focussed on the roof. Introduction of the high-speed cross-draught in warm conditions resulted in a decrease in roof activity and increase in side activity though neither effect was statistically significant. Conclusions Results are interpreted in terms of the flow of the stimulatory odour plume produced by the net occupant which, consistent with established principles of fluid dynamics, appears to rise quickly and remain more intact above the net occupant in cool, still air than in warm, still air. Cross-draught effects are ascribed to the changes they cause in the flow of the host odour plume as opposed to mosquito flight directly. The implications of these results for house designs that promote indoor air movement, on bed net design, and on other vector control measures are discussed. How mosquitoes approach a net is influenced both by indoor temperature and ventilation and their interaction. This system is in need of further study.


2021 ◽  
Vol 48 (1) ◽  
pp. 29-36
Author(s):  
Kevin Yonathan Tanumidjaja ◽  
Danny Santoso Mintorogo ◽  
Rully Damayanti

The use of split-type air conditioner in Surabaya results in the almost universal typical apartment layouts which feature a recessed balcony upon the building’s exterior façade which then utilized as air-conditioner condenser unit storage. Façade geometry with recessed balcony itself carries its own characteristic of surface air movement which affects the general Indoor Air Quality (IAQ) and heat dissipation of a building. Nevertheless, façade as architectural elements greatly influence building’s energy performance. Inefficiencies in heat dissipation from a condenser unit is detrimental on its performance and precipitate energy wastage. Based on computational fluid dynamics (CFD) analysis incorporated with energy performance evaluation, the effectiveness of façade geometry with recessed balcony is explored in this paper. It was found that recessed balconies are not an ideal place for condenser unit placement on a façade where many factors contributed to promoting heat re-entry from condenser units into the building’s interior.


Sign in / Sign up

Export Citation Format

Share Document