transverse current
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Vol 120 (1) ◽  
pp. 012403
Author(s):  
Lei Wang ◽  
Ka Shen ◽  
Stepan S. Tsirkin ◽  
Tai Min ◽  
Ke Xia
Keyword(s):  

2021 ◽  
Vol 2056 (1) ◽  
pp. 012051
Author(s):  
N A Vetrova ◽  
A A Filyaev ◽  
V D Shashurin ◽  
L A Luneva

Abstract Predictor of the reliability indicators of resonant tunneling diodes with a generalization of the methodology for nanoelectronic heterostructure devices with quantum confinement and transverse current transfer has been developed. The advantage of the developed software is the possibility of interactive input of additional experimental information for further calculation of point and interval estimates of the reliability indicators of semiconductor devices using Bayesian inversion, which allows predicting these indicators under conditions of limited experimental information.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takehito Yokoyama

AbstractTransverse current due to Berry curvature in phase space is formulated based on the Boltzmann equations with the semiclassical equations of motion for an electron wave packet. It is shown that the Hall effect due to the phase space Berry curvature is absent because the contributions from “anomalous velocity” and “effective Lorentz force” are completely cancelled out.


Author(s):  
Ladislaus Alexander Bányai

AbstractWe extend the standard solid-state quantum mechanical Hamiltonian containing only Coulomb interactions between the charged particles by inclusion of the (transverse) current-current diamagnetic interaction starting from the non-relativistic QED restricted to the states without photons and neglecting the retardation in the photon propagator. This derivation is supplemented with a derivation of an analogous result along the non-rigorous old classical Darwin-Landau-Lifshitz argumentation within the physical Coulomb gauge.


2021 ◽  
Vol 118 (21) ◽  
pp. e2100736118
Author(s):  
Yang Zhang ◽  
Liang Fu

We propose a method for broadband long-wavelength photodetection using the nonlinear Hall effect in noncentrosymmetric quantum materials. The inherently quadratic relation between transverse current and input voltage at zero magnetic field is used to rectify the incident terahertz or infrared electric field into a direct current, without invoking any diode. Our photodetector operates at zero external bias with fast response speed and has zero threshold voltage. Remarkably, the intrinsic current responsivity due to the Berry curvature mechanism is a material property independent of the incident frequency or the scattering rate, which can be evaluated from first-principles electronic structure calculations. We identify the Weyl semimetal NbP and ferroelectric semiconductor GeTe for terahertz/infrared photodetection with large current responsivity without external bias.


2021 ◽  
Vol 409 ◽  
pp. 158-178
Author(s):  
Abdelkader Feddal ◽  
Abbes Azzi ◽  
Ahmed Zineddine Dellil

This paper deals with studying numerically two circular turbulent jets impinging on a flat surface with a low velocity cross flow by using ANSYS CFX 16.2, with the aim of proving the effect ofReynolds number on the flow demeanor in a vertical circular free turbulent jet with cross flow. Five turbulence models of the RANS (Reynolds Averaged Navier–Stokes) approach were tested and the k -ω SST model was chosen to validate CFD results with the experimental data. Average velocity profiles, velocity and turbulent kinetic energy contours and streamlines are presented for four case configurations. In the first three cases, the following parameters have been varied: Reynolds number at the level of the two jets ( ), wind velocity at the level of the cross-flow ( ), and the distance between the two jets (S = 45mm, 90mm and 135mm). In the last case, a new configuration of the phenomenon not yet studied so far was treated, where horizontal cross-flows were introduced from both sides in order to simulate gusts of wind disrupting a VSTOL aircraft which tries to operate close to the ground. This case was carried out for Reynolds number based on the crossflow of 4 104, 10 104 and 20 104 .The numerical results obtained show that the deflection of the jets is minimal when the Reynolds number at the level of the jets is greater than that of the cross-flow. The increase of Reynolds number at the level of the cross-flow reveals a significant deviation of the two jets with an intensity which always remains less for the second jet. As for the space parameter between the two jets, it turns out that the fact of further spacing the two jets makes the first jet even more vulnerable and leads to a greater deflection. Finally, the simulation of the wind gusts from the front and the back caused a zone of turbulence which resulted from a form of "interlacing" of the two jets under the effect of the transverse current imposed by the two sides.


Author(s):  
Ladislaus Alexander Bányai

We extend the standard solid-state quantum mechanical Hamiltonian containing only Coulomb interactions between the charged particles by inclusion of the (transverse) current-current diamagnetic interaction starting form the non-relativistic QED restricted to the states without photons and neglecting the retardation in the photon propagator. This derivation is supplemented with a derivation of an analogous result along the non-rigorous old classical Darwin-Landau-Lifshitz argumentation within the physical Coulomb gauge.


2021 ◽  
Vol 94 (1) ◽  
Author(s):  
Ladislaus Alexander Bányai

Abstract We show that the implementation of the $$1/ c^2 $$ 1 / c 2 transverse current–current interaction between electrons resulting from the non-relativistic QED into the standard self-consistent electron BCS model in bulk under thermal equilibrium in the stable superconductive phase ensures the full compensation of a constant external magnetic field by the internal magnetic field created by the electrons, i.e. one has an ideal diamagnet. GraphicAbstract


Author(s):  
Ladislaus Banyai

We show that the implementation of the 1/c² transverse current-current interaction between electrons into the standard self-consistent electron BCS model in bulk under thermal equilibrium ensures in the stable superconductive phase the full compensation of a constant external magnetic field by the internal magnetic field created by the electrons i.e. one has an ideal diamagnet. However, no proof of the phenomenological London equation emerges within the bulk approach.


Author(s):  
Igor A. Guschin

On the basis of two models of lightning currents spreading on carbon plastic, the criteria of material destruction are determined. One of the models – the anisotropic conductive medium model from the Laplace equation with specified Neumann boundary conditions – makes it possible to obtain an exact solution in the form of Bessel functions for longitudinal and transverse current densities and to consider the material destruction zones by the radius and the depth. The model adequately describes the experiment with different arrangement of electrodes simulating the passage of lightning currents on constructions made of conductive composite and metal. The second – the model of composite layered structure – is constructed using the diagram of carbon plastic substitution and makes it possible to find the distribution of currents by a numerical method. The results of the calculations for both models are well consistent. The dynamics analysis of carbon plastic destruction revealed the criteria of destruction with parameters of real carbon plastic and experiment data that do not contradict the parameters of carbon plastic destruction obtained in foreign experimental studies. These criteria allow to determine the dependence between the value of the current integral and the number of layers of the composite material. Options with a small number of layers and with a large one when the reach-through breakdown criterion is possible were taken into account. Comparison of calculated and experimental destruction data showed good curve matching. The obtained criteria make it possible to predict the effects of lightning exposure under different material parameters and to take measures to improve the lightning resistance of carbon plastic products at the stage of aircraft design.


Sign in / Sign up

Export Citation Format

Share Document