vapour compression
Recently Published Documents


TOTAL DOCUMENTS

579
(FIVE YEARS 163)

H-INDEX

36
(FIVE YEARS 7)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 425
Author(s):  
Solomon Aforkoghene Aromada ◽  
Nils Henrik Eldrup ◽  
Lars Erik Øi

The performance of a plate heat exchanger (PHE), in comparison with the conventional shell and tube types, through a trade-off analysis of energy cost and capital cost resulting from different temperature approaches in the cross-exchanger of a solvent-based CO2 capture process, was evaluated. The aim was to examine the cost reduction and CO2 emission reduction potentials of the different heat exchangers. Each specific heat exchanger type was assumed for the cross-exchanger, the lean amine cooler and the cooler to cool the direct contact cooler’s circulation water. The study was conducted for flue gases from a natural-gas combined-cycle power plant and the Brevik cement plant in Norway. The standard and the lean vapour compression CO2 absorption configurations were used for the study. The PHE outperformed the fixed tube sheet shell and tube heat exchanger (FTS-STHX) and the other STHXs economically and in emissions reduction. The optimal minimum temperature approach for the PHE cases based on CO2 avoided cost were achieved at 4 °C to 7 °C. This is where the energy consumption and indirect emissions are relatively low. The lean vapour compression CO2 capture process with optimum PHE achieved a 16% reduction in CO2 avoided cost in the cement plant process. When the available excess heat for the production of steam for 50% CO2 capture was considered together with the optimum PHE case of the lean vapour compression process, a cost reduction of about 34% was estimated. That is compared to a standard capture process with FTS-STHX without consideration of the excess heat. This highlights the importance of the waste heat at the Norcem cement plant. This study recommends the use of plate heat exchangers for the cross-heat exchanger (at 4–7 °C), lean amine cooler and the DCC unit’s circulation water cooler. To achieve the best possible CO2 capture process economically and in respect of emissions reduction, it is imperative to perform energy cost and capital cost trade-off analysis based on different minimum temperature approaches.


2022 ◽  
Vol 354 ◽  
pp. 00026
Author(s):  
Ion Dosa ◽  
Sorina Anuțoiu ◽  
Dan Codrut Petrilean ◽  
Gheorghe Urdea

In mine air conditioning systems, the vapour compression refrigeration cycle seems to be currently the most widespread method of artificial cooling. In literature some other methods for cooling a mine are also presented, like using free-cooling in refrigeration systems. Mine workings in Jiu Valley are using the primary and secondary ventilation system for cooling the underground. Today the activities are focused mainly on mine closure as a part of transition to the low carbon economy, and this situation brings new challenges regarding the mine ventilation system, which was designed to meet the needs of a full-scale operation. As a result, locally ambient temperatures can rise, and spot cooling systems can be used, in order to cool the air. Such a system has been considered and calculations have been made to evaluate its thermal efficiency at different ambient temperatures.


Author(s):  
P. Saji Raveendran ◽  
R. Karthikeyan ◽  
P.C. Murugan ◽  
S. Sanjay ◽  
S. Vivek Raj ◽  
...  

The vapour compression refrigeration system (VCRS) plays a vital role in the food preservation and it consumes more energy. The use of energy-efficient refrigerants, phase change materials (PCMs) in the condenser and evaporator, and the replacement of existing components, as well as nano-refrigerants, are all efforts made to increase the energy efficiency of the VCRS from different perspectives. Among them, the PCMs play a prominent role and gives sustainable energy efficiency in VCRS. This paper investigates and clarifies the energy efficiency of VCRS can be improved by incorporating a PCM into the evaporator cabin. The experimental results demonstrated substantial effects on system performance such as an improvement in COP of 7.1%, a decrease in per day energy consumption by 6.7%, and comparatively smaller temperature fluctuations within the freezer cabinet. The exergy efficiency is increased and Total Equivalent Warming Impact (TEWI) is decreasing than that of the system without PCM by 7.6 and 7% respectively. This technique is integrated into the VCRS, leading to savings in energy while also being useful for power interruptions common in areas with low grid reliability.


Author(s):  
Prakash K B ◽  
◽  
Subramanian C ◽  
Chandrasekaran M ◽  
Kalidasan B ◽  
...  

Vapour Compression Refrigeration (VCR) system with high COP, low input power consumption and minimal exergy losses are of great research hotspot. The current research focuses on analysis of exergy and performance of vapour compression refrigeration (VCR) cycle is in a real-world application. Experiments were carried out in the VCR system using round tube condenser and microchannel condenser along with different refrigerants R134a, and R1234yf. Temperatures were varied from +20°C to 5°C for the evaporator and 40°C to 50°C for the condenser. Among the two refrigerants, experimental results show that refrigerants operating in micro-channel condensers have COP of 6% and 4%greater higher with5% and 3% lower exergy loss compared to the round tube condenser for R134a and R1234yf respectively.R1234yf appears to be a better equivalent for R134a, according to the findings. The efficiency defect in the condenser is the greatest and least in the evaporator for the coolants examined.


Clean Energy ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 476-491
Author(s):  
Yunis Khan ◽  
Radhey Shyam Mishra

Abstract In this study, a parametric analysis was performed of a supercritical organic Rankine cycle driven by solar parabolic trough collectors (PTCs) coupled with a vapour-compression refrigeration cycle simultaneously for cooling and power production. Thermal efficiency, exergy efficiency, exergy destruction and the coefficient of performance of the cogeneration system were considered to be performance parameters. A computer program was developed in engineering equation-solver software for analysis. Influences of the PTC design parameters (solar irradiation, solar-beam incidence angle and velocity of the heat-transfer fluid in the absorber tube), turbine inlet pressure, condenser and evaporator temperature on system performance were discussed. Furthermore, the performance of the cogeneration system was also compared with and without PTCs. It was concluded that it was necessary to design the PTCs carefully in order to achieve better cogeneration performance. The highest values of exergy efficiency, thermal efficiency and exergy destruction of the cogeneration system were 92.9%, 51.13% and 1437 kW, respectively, at 0.95 kW/m2 of solar irradiation based on working fluid R227ea, but the highest coefficient of performance was found to be 2.278 on the basis of working fluid R134a. It was also obtained from the results that PTCs accounted for 76.32% of the total exergy destruction of the overall system and the cogeneration system performed well without considering solar performance.


2021 ◽  
Vol 26 (3) ◽  
pp. 119-130
Author(s):  
R.A. Mahmood ◽  
O.M. Ali ◽  
A. Al-Janabi ◽  
G. Al-Doori ◽  
M.M. Noor

Abstract Reducing energy consumption and providing high performance for a vapour compression refrigeration system are big challenges that need more attention and investigation. This paper provides an extensive review of experimental and theoretical studies to present the vapour compression refrigeration system and its modifications that can be used to improve system’s performance and reduce its energy consumption. This paper also presents the challenges that can be considered as a gab of research for the future works and investigations. Cooling capacity, refrigerant effect, energy consumption can be improved by using vapour injection technique, natural working fluid, and heat exchanger. Based on the outcome of this paper, vapour injection technique using natural refrigerant such as water can provide ultimate friendly refrigeration system. Future vision for the vapour compression refrigeration system and its new design technique using Computational Fluid Dynamic (CFD) is also considered and presented.


Sign in / Sign up

Export Citation Format

Share Document