colloidal probe
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 28)

H-INDEX

23
(FIVE YEARS 5)

Cellulose ◽  
2021 ◽  
Author(s):  
Julia Auernhammer ◽  
Tom Keil ◽  
Binbin Lin ◽  
Jan-Lukas Schäfer ◽  
Bai-Xiang Xu ◽  
...  

AbstractModelling of single cellulose fibres is usually performed by assuming homogenous properties, such as strength and Young’s modulus, for the whole fibre. Additionally, the inhomogeneity in size and swelling behaviour along the fibre is often disregarded. For better numerical models, a more detailed characterisation of the fibre is required. Herein, we report a method based on atomic force microscopy to map these properties along the fibre. A fibre was mechanically characterised by static colloidal probe AFM measurements along the longitudinal direction of the fibre. Thus, the contact stress and strain at each loading point could be extracted. Stress–strain curves were be obtained along the fibre. Additionally, mechanical properties such as adhesion or dissipation were mapped. Local variations of the effective fibre radius were recorded via confocal laser scanning microscopy. Scanning electron microscopy measurements revealed the local macroscopic fibril orientation and provided an overview of the fibre topography. By combining these data, regions along the fibre with higher adhesion, dissipation, bending ability and strain or differences in the contact stress when increasing the relative humidity could be identified. This combined approach allows for one to obtain a detailed picture of the mechanical properties of single fibres. Graphic abstract


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chiao-Peng Hsu ◽  
Joydeb Mandal ◽  
Shivaprakash N. Ramakrishna ◽  
Nicholas D. Spencer ◽  
Lucio Isa

AbstractDense suspensions of colloidal or granular particles can display pronounced non-Newtonian behaviour, such as discontinuous shear thickening and shear jamming. The essential contribution of particle surface roughness and adhesive forces confirms that stress-activated frictional contacts can play a key role in these phenomena. Here, by employing a system of microparticles coated by responsive polymers, we report experimental evidence that the relative contributions of friction, adhesion, and surface roughness can be tuned in situ as a function of temperature. Modifying temperature during shear therefore allows contact conditions to be regulated, and discontinuous shear thickening to be switched on and off on demand. The macroscopic rheological response follows the dictates of independent single-particle characterization of adhesive and tribological properties, obtained by colloidal-probe atomic force microscopy. Our findings identify additional routes for the design of smart non-Newtonian fluids and open a way to more directly connect experiments to computational models of sheared suspensions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomasz Witko ◽  
Zbigniew Baster ◽  
Zenon Rajfur ◽  
Kamila Sofińska ◽  
Jakub Barbasz

AbstractA precise determination of the cantilever spring constant is the critical point of all colloidal probe experiments. Existing methods are based on approximations considering only cantilever geometry and do not take into account properties of any object or substance attached to the cantilever. Neglecting the influence of the colloidal sphere on the cantilever characteristics introduces significant uncertainty in a spring constant determination and affects all further considerations. In this work we propose a new method of spring constant calibration for ‘colloidal probe’ type cantilevers based on the direct measurement of force constant. The Optical Tweezers based calibration method will help to increase the accuracy and repeatability of the AFM colloidal probe experiments.


2021 ◽  
Author(s):  
Thomas I. R. Hopkins ◽  
Victoria L. Bemmer ◽  
Stephen Franks ◽  
Carina Dunlop ◽  
Kate Hardy ◽  
...  

AbstractFollicle development in the human ovary must be tightly regulated to ensure cyclical release of oocytes (ovulation), and disruption of this process is a common cause of infertility. Recent ex vivo studies suggest that follicle growth may be mechanically regulated, however the actual mechanical properties of the follicle microenvironment have remained unknown. Here we map and quantify the mechanical microenvironment in mouse ovaries using colloidal probe atomic force microscope (AFM) indentation, finding an overall mean Young’s Modulus 3.3 ± 2.5 kPa. Spatially, stiffness is low at the ovarian edge and centre, which are dominated by extra-follicular ECM, and highest in an intermediate zone dominated by large follicles. This suggests that large follicles should be considered as mechanically dominant structures in the ovary, in contrast to previous expectations. Our results provide a new, physiologically accurate framework for investigating how mechanics impacts follicle development and will underpin future tissue engineering of the ovary.


2020 ◽  
Vol 4 (3) ◽  
pp. 41
Author(s):  
Illia Dobryden ◽  
Elizaveta Mensi ◽  
Allan Holmgren ◽  
Nils Almqvist

Dispersion and aggregation of nanomagnetite (Fe3O4) and silica (SiO2) particles are of high importance in various applications, such as biomedicine, nanoelectronics, drug delivery, flotation, and pelletization of iron ore. In directly probing nanomagnetite–silica interaction, atomic force microscopy (AFM) using the colloidal probe technique has proven to be a suitable tool. In this work, the interaction between nanomagnetite and silica particles was measured with AFM in aqueous Ca2+ solution at different pH levels. This study showed that the qualitative changes of the interaction forces with pH and Ca2+ concentrations were consistent with the results from zeta-potential measurements. The repulsion between nanomagnetite and silica was observed at alkaline pH and 1 mM Ca2+ concentration, but no repulsive forces were observed at 3 mM Ca2+ concentration. The interaction forces on approach were due to van der Waals and electrical double-layer forces. The good fitting of experimental data to the DLVO model and simulations supported this conclusion. However, contributions from non-DLVO forces should also be considered. It was shown that an increase of Ca2+ concentration from 1 to 3.3 mM led to a less pronounced decrease of adhesion force with increasing pH. A comparison of measured and calculated adhesion forces with a few contact mechanics models demonstrated an important impact of nanomagnetite layer nanoroughness.


2020 ◽  
Vol 20 (10) ◽  
pp. 2000186
Author(s):  
Alexander Klaus Strzelczyk ◽  
Tanja Janine Paul ◽  
Stephan Schmidt
Keyword(s):  

2020 ◽  
Vol 10 (14) ◽  
pp. 4970
Author(s):  
Yujiro Sugino ◽  
Masahiro Ikenaga ◽  
Daisuke Mizuno

Optical trapping and laser interferometry enable the non-invasive manipulation of colloids, which can be used to investigate the microscopic mechanics of surrounding media or bound macromolecules. For efficient trapping and precise tracking, the sample media must ideally be homogeneous and quiescent whereas such conditions are usually not satisfied in vivo in living cells. In order to investigate mechanics of the living-cell interior, we introduced (1) the in-situ calibration of optical trapping and laser interferometry, and (2) 3-D feedback control of a sample stage to stably track a colloidal particle. Investigating systematic errors that appear owing to sample heterogeneity and focal offsets of a trapping laser relative to the colloidal probe, we provide several important caveats for conducting precise optical micromanipulation in living cells. On the basis of this study, we further improved the performance of the techniques to be used in cells, by optimizing the position sensitivity of laser interferometry and the stability of the feedback simultaneously.


Sign in / Sign up

Export Citation Format

Share Document