landform classification
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 34)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 14 (1) ◽  
pp. 219
Author(s):  
Dorothée James ◽  
Antoine Collin ◽  
Antoine Mury ◽  
Rongjun Qin

The evolution of the coastal fringe is closely linked to the impact of climate change, specifically increases in sea level and storm intensity. The anthropic pressure that is inflicted on these fragile environments strengthens the risk. Therefore, numerous research projects look into the possibility of monitoring and understanding the coastal environment in order to better identify its dynamics and adaptation to the major changes that are currently taking place in the landscape. This new study aims to improve the habitat mapping/classification at Very High Resolution (VHR) using Pleiades–1–derived topography, its morphometric by–products, and Pleiades–1–derived imageries. A tri–stereo dataset was acquired and processed by image pairing to obtain nine digital surface models (DSM) that were 0.50 m pixel size using the free software RSP (RPC Stereo Processor) and that were calibrated and validated with the 2018–LiDAR dataset that was available for the study area: the Emerald Coast in Brittany (France). Four morphometric predictors that were derived from the best of the nine generated DSMs were calculated via a freely available software (SAGA GIS): slope, aspect, topographic position index (TPI), and TPI–based landform classification (TPILC). A maximum likelihood classification of the area was calculated using nine classes: the salt marsh, dune, rock, urban, field, forest, beach, road, and seawater classes. With an RMSE of 4 m, the DSM#2–3_1 (from images #2 and #3 with one ground control point) outperformed the other DSMs. The classification results that were computed from the DSM#2–3_1 demonstrate the importance of the contribution of the morphometric predictors that were added to the reference Red–Green–Blue (RGB, 76.37% in overall accuracy, OA). The best combination of TPILC that was added to the RGB + DSM provided a gain of 13% in the OA, reaching 89.37%. These findings will help scientists and managers who are tasked with coastal risks at VHR.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 480
Author(s):  
Boglárka Németh ◽  
Károly Németh ◽  
Jon N. Procter

The increase in geoheritage studies has secured recognition globally regarding the importance of abiotic natural features. Prominent in geoheritage screening practices follows a multicriteria assessment framework; however, the complexity of interest in values often causes decision making to overlook geoeducation, one of the primary facets of geosystem services. Auckland volcanic field in New Zealand stretches through the whole area of metropolitan Auckland, which helps preserve volcanic cones and their cultural heritage around its central business district (CBD). They are important sites for developing tourist activities. Geoeducation is becoming a significant factor for tourists and others visiting geomorphological features, but it cannot be achieved without sound planning. This paper investigates the use of big data (FlickR), Geopreservation Inventory, and Geographic Information System for identifying geoeducation capacity of tourist attractions. Through landform classification using the Topographic Position Index and integrated with geological and the inventory data, the underpromoted important geoeducation sites can be mapped and added to the spatial database Auckland Council uses for urban planning. The use of the Geoeducation Capacity Map can help resolve conflicts between the multiple objectives that a bicultural, metropolitan city council need to tackle in the planning of upgrading open spaces while battling of growing demand for land.


2021 ◽  
Vol 13 (22) ◽  
pp. 4653
Author(s):  
Martin Karlson ◽  
David Bastviken ◽  
Heather Reese

Many biochemical processes and dynamics are strongly controlled by terrain topography, making digital elevation models (DEM) a fundamental dataset for a range of applications. This study investigates the quality of four pan-Arctic DEMs (Arctic DEM, ASTER DEM, ALOS DEM and Copernicus DEM) within the Kalix River watershed in northern Sweden, with the aim of informing users about the quality when comparing these DEMs. The quality assessment focuses on both the vertical accuracy of the DEMs and their abilities to model two fundamental elevation derivatives, including topographic wetness index (TWI) and landform classification. Our results show that the vertical accuracy is relatively high for Arctic DEM, ALOS and Copernicus and in our study area was slightly better than those reported in official validation results. Vertical errors are mainly caused by tree cover characteristics and terrain slope. On the other hand, the high vertical accuracy does not translate directly into high quality elevation derivatives, such as TWI and landform classes, as shown by the large errors in TWI and landform classification for all four candidate DEMs. Copernicus produced elevation derivatives with results most similar to those from the reference DEM, but the errors are still relatively high, with large underestimation of TWI in land cover classes with a high likelihood of being wet. Overall, the Copernicus DEM produced the most accurate elevation derivatives, followed by slightly lower accuracies from Arctic DEM and ALOS, and the least accurate being ASTER.


2021 ◽  
Vol 10 (11) ◽  
pp. 725
Author(s):  
Dario Gioia ◽  
Maria Danese ◽  
Giuseppe Corrado ◽  
Paola Di Leo ◽  
Antonio Minervino Amodio ◽  
...  

Automatic procedures for landform extraction is a growing research field but extensive quantitative studies of the prediction accuracy of Automatic Landform Classification (ACL) based on a direct comparison with geomorphological maps are rather limited. In this work, we test the accuracy of an algorithm of automatic landform classification on a large sector of the Ionian coast of the southern Italian belt through a quantitative comparison with a detailed geomorphological map. Automatic landform classification was performed by using an algorithm based on the individuation of basic landform classes named geomorphons. Spatial overlay between the main mapped landforms deriving from traditional geomorphological analysis and the automatic landform classification results highlighted a satisfactory percentage of accuracy (higher than 70%) of the geomorphon-based method for the coastal plain area and drainage network. The percentage of accuracy decreased by about 20–30% for marine and fluvial terraces, while the overall accuracy of the ACL map is 69%. Our results suggest that geomorphon-based classification could represent a basic and robust tool to recognize the main geomorphological elements of landscape at a large scale, which can be useful for the advanced steps of geomorphological mapping such as genetic interpretation of landforms and detailed delineation of complex and composite geomorphic elements.


2021 ◽  
Vol 10 (10) ◽  
pp. 658
Author(s):  
Yuexue Xu ◽  
Shengjia Zhang ◽  
Jinyu Li ◽  
Haiying Liu ◽  
Hongchun Zhu

Accurate landform classification is a crucial component of geomorphology. Although extensive classification efforts have been exerted based on the terrain factor, the scale analysis to describe the macro and micro landform features still needs standard measurement. To obtain the appropriate analysis scale of landform structure feature, and then carry out landform classification using the terrain texture, the texture feature is introduced for reflecting landform spatial differentiation and homogeneity. First, applying the ALOS World 3D-30m (AW3D30) DEM and selecting typical landforms of the southwest Tibet Plateau, the discrete wavelet transform (DWT), which acts as the texture feature analysis method, is executed to dissect the multiscale structural features of the terrain texture. Second, through the structural indices of reconstructed texture images, the optimum decomposition scale of DWT is confirmed. Under these circumstances, wavelet coefficients and wavelet energy entropy are extracted as texture features. Finally, the random forest (RF) method is utilized to classify the landform. Results indicate that the texture feature of DWT can achieve higher classification accuracy, which increases by approximately 11.8% compared with the gray co-occurrence matrix (GLCM).


2021 ◽  
Vol 13 (19) ◽  
pp. 3926
Author(s):  
Siwei Lin ◽  
Nan Chen ◽  
Zhuowen He

Landform recognition is one of the most significant aspects of geomorphology research, which is the essential tool for landform classification and understanding geomorphological processes. Watershed object-based landform recognition is a new spot in the field of landform recognition. However, in the relevant studies, the quantitative description of the watershed generally focused on the overall terrain features of the watershed, which ignored the spatial structure and topological relationship, and internal mechanism of the watershed. For the first time, we proposed an effective landform recognition method from the perspective of the watershed spatial structure, which is separated from the previous studies that invariably used terrain indices or texture derivatives. The slope spectrum method was used herein to solve the uncertainty issue of the determination on the watershed area. Complex network and P–N terrain, which are two effective methodologies to describe the spatial structure and topological relationship of the watershed, were adopted to simulate the spatial structure of the watershed. Then, 13 quantitative indices were, respectively, derived from two kinds of watershed spatial structures. With an advanced machine learning algorithm (LightGBM), experiment results showed that the proposed method showed good comprehensive performances. The overall accuracy achieved 91.67% and the Kappa coefficient achieved 0.90. By comparing with the landform recognition using terrain indices or texture derivatives, it showed better performance and robustness. It was noted that, in terms of loess ridge and loess hill, the proposed method can achieve higher accuracy, which may indicate that the proposed method is more effective than the previous methods in alleviating the confusion of the landforms whose morphologies are complex and similar. In addition, the LightGBM is more suitable for the proposed method, since the comprehensive manifestation of their combination is better than other machine learning methods by contrast. Overall, the proposed method is out of the previous landform recognition method and provided new insights for the field of landform recognition; experiments show the new method is an effective and valuable landform recognition method with great potential as well as being more suitable for watershed object-based landform recognition.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2032
Author(s):  
Pâmela A. Melo ◽  
Lívia A. Alvarenga ◽  
Javier Tomasella ◽  
Carlos R. Mello ◽  
Minella A. Martins ◽  
...  

Landform classification is important for representing soil physical properties varying continuously across the landscape and for understanding many hydrological processes in watersheds. Considering it, this study aims to use a geomorphology map (Geomorphons) as an input to a physically based hydrological model (Distributed Hydrology Soil Vegetation Model (DHSVM)) in a mountainous headwater watershed. A sensitivity analysis of five soil parameters was evaluated for streamflow simulation in each Geomorphons feature. As infiltration and saturation excess overland flow are important mechanisms for streamflow generation in complex terrain watersheds, the model’s input soil parameters were most sensitive in the “slope”, “hollow”, and “valley” features. Thus, the simulated streamflow was compared with observed data for calibration and validation. The model performance was satisfactory and equivalent to previous simulations in the same watershed using pedological survey and moisture zone maps. Therefore, the results from this study indicate that a geomorphologically based map is applicable and representative for spatially distributing hydrological parameters in the DHSVM.


Author(s):  
Yuexue Xu ◽  
Hongchun Zhu ◽  
Changyu Hu ◽  
Haiying Liu ◽  
Yu Cheng

Sign in / Sign up

Export Citation Format

Share Document