ranging errors
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 17)

H-INDEX

6
(FIVE YEARS 2)

2022 ◽  
Vol 14 (2) ◽  
pp. 318
Author(s):  
Meiqian Guan ◽  
Tianhe Xu ◽  
Min Li ◽  
Fan Gao ◽  
Dapeng Mu

Positioning of spacecraft (e.g., geostationary orbit (GEO), high elliptical orbit (HEO), and lunar trajectory) is crucial for mission completion. Instead of using ground control systems, global navigation satellite system (GNSS) can be an effective approach to provide positioning, navigation and timing service for spacecraft. In 2020, China finished the construction of the third generation of BeiDou navigation satellite system (BDS-3); this global coverage system will contribute better sidelobe signal visibility for spacecraft. Meanwhile, with more than 100 GNSS satellites, multi-GNSS navigation performance on the spacecraft is worth studying. In this paper, instead of using signal-in-space ranging errors, we simulate pseudorange observations with measurement noises varying with received signal powers. Navigation performances of BDS-3 and its combinations with other systems were conducted. Results showed that, owing to GEO and inclined geosynchronous orbit (IGSO) satellites, all three types (GEO, HEO, and lunar trajectory) of spacecraft received more signals from BDS-3 than from other navigation systems. Single point positioning (SPP) accuracy of the GEO and HEO spacecraft was 17.7 and 23.1 m, respectively, with BDS-3 data alone. Including the other three systems, i.e., GPS, Galileo, and GLONASS, improved the SPP accuracy by 36.2% and 19.9% for GEO and HEO, respectively. Navigation performance of the lunar probe was significantly improved when receiver sensitivity increased from 20 dB-Hz to 15 dB-Hz. Only dual- (BDS-3/GPS) or multi-GNSS (BDS-3, GPS, Galileo, GLONASS) could provide continuous navigation solutions with a receiver threshold of 15 dB-Hz.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8028
Author(s):  
Dongqing Zhao ◽  
Dongmin Wang ◽  
Minzhi Xiang ◽  
Jinfei Li ◽  
Chaoyong Yang ◽  
...  

The wide use of cooperative missions using multiple unmanned platforms has made relative distance information an essential factor for cooperative positioning and formation control. Reducing the range error effectively in real time has become the main technical challenge. We present a new method to deal with ranging errors based on the distance increment (DI). The DI calculated by dead reckoning is used to smooth the DI obtained by the cooperative positioning, and the smoothed DI is then used to detect and estimate the non-line-of-sight (NLOS) error as well as to smooth the observed values containing random noise in the filtering process. Simulation and experimental results show that the relative accuracy of NLOS estimation is 8.17%, with the maximum random error reduced by 40.27%. The algorithm weakens the influence of NLOS and random errors on the measurement distance, thus improving the relative distance precision and enhancing the stability and reliability of cooperative positioning.


Author(s):  
Yong Tian ◽  
Quancai Li ◽  
Shuman Guo ◽  
Gongrou Fu ◽  
Shichang Wang ◽  
...  

In order to improve the accuracy of the monocular distance measurement of the vehicle in front under sunny, cloudy, rainy, snowy, and foggy weather, an improved pixel-mapping monocular distance measurement method is proposed. This method is based on eight-connected domains to detect the front vehicle, obtain the line pixels of the target vehicle in the image, and fit the image line pixels to the corresponding real longitudinal distance function, and combine the fitted function with the internal and external parameters of the camera. An improved pixel-mapping monocular ranging model is obtained. Set up a test environment under different weather to verify the feasibility of the algorithm. The results show that in the four environments, the detectable distances are within 70m, 60m, 30m, and 40m respectively; the error of the improved pixel-mapping monocular ranging method is reduced by 0.6% on average compared with before the improvement, up to 0.92% ; The improved algorithm ranging errors under the four weathers are 1.8513%, 2.6987%, 4.0137%, and 2.5795% respectively, which achieves the purpose of improving the accuracy of the monocular distance measurement of the vehicle in front under multiple weather conditions.


GPS Solutions ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Bing Xue ◽  
Haitao Wang ◽  
Yunbin Yuan
Keyword(s):  

2020 ◽  
Vol 12 (20) ◽  
pp. 3365
Author(s):  
Byung-Kyu Choi ◽  
Kyoung-Min Roh ◽  
Haibo Ge ◽  
Maorong Ge ◽  
Jung-Min Joo ◽  
...  

The Korean government has a plan to build a new regional satellite navigation system called the Korean Positioning System (KPS). The initial KPS constellation is designed to consist of seven satellites, which include three geostationary Earth orbit (GEO) satellites and four inclined geosynchronous orbit (IGSO) satellites. KPS will provide an independent positioning, navigation, and timing (PNT) service in the Asia-Oceania region and can also be compatible with GPS. In the simulation for KPS, we employ 24 GPS as designed initially and 7 KPS satellites. Compared to the true orbit that we simulated, the averaged root mean square (RMS) values of orbit-only signal-in-space ranging errors (SISRE) are approximately 4.3 and 3.9 cm for KPS GEO and IGSO. Two different positioning solutions are analyzed to demonstrate the KPS performance. KPS standard point positioning (SPP) errors in the service area are about 4.7, 3.9, and 7.1 m for east (E), north (N), and up (U) components, respectively. The combined KPS+GPS SPP accuracy can be improved by 25.0%, 31.8%, and 35.0% compared to GPS in E, N, and U components. The averaged position errors for KPS kinematic precise point positioning (KPPP) are less than 10 cm. In the fringe of the KPS service area, however, the position RMS errors can reach about 40 cm. Unlike KPS, GPS solutions show high positioning accuracy in the KPS service area. The combined KPS+GPS can be improved by 28.7%, 27.1%, and 30.5% compared to GPS in E, N, and U components, respectively. It is noted that KPS can provide better performance with GPS in the Asia-Oceania region.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5718
Author(s):  
Rohan Kapoor ◽  
Alessandro Gardi ◽  
Roberto Sabatini

This paper addresses some of the existing research gaps in the practical use of acoustic waves for navigation of autonomous air and surface vehicles. After providing a characterisation of ultrasonic transducers, a multistatic sensor arrangement is discussed, with multiple transmitters broadcasting their respective signals in a round-robin fashion, following a time division multiple access (TDMA) scheme. In particular, an optimisation methodology for the placement of transmitters in a given test volume is presented with the objective of minimizing the position dilution of precision (PDOP) and maximizing the sensor availability. Additionally, the contribution of platform dynamics to positioning error is also analysed in order to support future ground and flight vehicle test activities. Results are presented of both theoretical and experimental data analysis performed to determine the positioning accuracy attainable from the proposed multistatic acoustic navigation sensor. In particular, the ranging errors due to signal delays and attenuation of sound waves in air are analytically derived, and static indoor positioning tests are performed to determine the positioning accuracy attainable with different transmitter–receiver-relative geometries. Additionally, it is shown that the proposed transmitter placement optimisation methodology leads to increased accuracy and better coverage in an indoor environment, where the required position, velocity, and time (PVT) data cannot be delivered by satellite-based navigation systems.


Author(s):  
Omotayo Oshiga ◽  
Ali Nyangwarimam Obadiah

An efficient and accurate method to evaluate the fundamental error bounds for wireless sen-sor localization is proposed. While there already exist efficient tools like Cram`er-Rao lower bound (CRLB) and position error bound (PEB) to estimate error limits, in their standard formulation they all need an accurate knowledge of the statistic of the ranging error. This requirement, under Non-Line-of-Sight (NLOS) environments, is impossible to be met a priori. Therefore, it is shown that collecting a small number of samples from each link and applying them to a non-parametric estimator, like the Gaussian kernel (GK), could lead to a quite accurate reconstruction of the error distribution. A proposed Edgeworth Expansion method is employed to reconstruct the error statistic in a much more efficient way with respect to the GK. It is shown that with this method, it is possible to get fundamental error bounds almost as accurate as the theoretical case, i.e. when a priori knowledge of the error distribution is available. Therein, a technique to determine fundamental error limits – CRLB and PEB – onsite without knowledge of the statistics of the ranging errors is proposed.


Author(s):  
C. M. Chang ◽  
J. J. Jaw

Abstract. When a target lies on discontinuous surfaces, the footprint of a laser rangefinder covering multiple ranges causes mixed pixels effect and significantly distorts the ranging quality. Meanwhile, the ranging error of incidence angle effect is triggered by a deformed footprint containing various ranges as well. Based on the commonality of causing ranging errors within one footprint, this study proposed an approach to tackle “generalized mixed pixels effect” correcting ranging errors involving in deformed footprint cases. Errors caused by generalized mixed pixels effect vary in rangefinders and are difficult to be uniformly treated. A correction model was formulated through integrating individual effects by considering the physical and geometrical aspects of laser ranging. An adjustment procedure was followed to estimate the parameters of the correction equation taking all observation uncertainties into account. To analyze the individual effects and eventually combine them into a complete model, a five-case workflow has been developed. Firstly, a divergence angle estimation method was presented to eliminate the mixed pixels effect by a decentering approach. Incidence angle effect was modeled and parameter was estimated by adjustment techniques. Particularly, since incidence angles are usually unknown in field surveys, an iterative estimation procedure was designed to obtain the optimal incidence angle of target points. Finally, offset correction accounting for generalized mixed pixels effect was formulated. Through the experimental tests on Trimble M3 DR 2” and Topcon GPT-3002LN, it is confirmed that the proposed method effectively resolves the ranging errors and preserves the ranging quality under generalized mixed pixels effect.


Sign in / Sign up

Export Citation Format

Share Document