In this study, the author focuses on modeling and optimizing a freight routing problem in a road-rail intermodal transportation network that combines the hub-and-spoke and point-to-point structures. The operations of road transportation are time flexible, while rail transportation has fixed departure times. The reliability of the routing is improved by modeling the uncertainty of the road-rail intermodal transportation network. Parameters that are influenced by the real-time status of the network, including capacities, travel times, loading and unloading times, and container trains’ fixed departure times, are considered uncertain in the routing decision-making. Based on fuzzy set theory, triangular fuzzy numbers are employed to formulate the uncertain parameters as well as resulting uncertain variables. Green routing is also discussed by treating the minimization of carbon dioxide emissions as an objective. First of all, a multiobjective fuzzy mixed integer nonlinear programming model is established for the specific reliable and green routing problem. Then, defuzzification, linearization, and weighted sum method are implemented to present a crisp linear model whose global optimum solutions can be effectively obtained by the exact solution algorithm run by mathematical programming software. Finally, a numerical case is given to demonstrate how the proposed methods work. In the case, sensitivity analysis is adopted to reveal the effects of uncertainty on the routing optimization. Fuzzy simulation is then performed to help decision makers to select the best crisp route plan by determining the best confidence level shown in the fuzzy chance constraints.