Urban Freight Routing Based on Static User Equilibrium

CICTP 2017 ◽  
2018 ◽  
Author(s):  
Liang Ma
Author(s):  
Evgen Kush ◽  
Andrii Galkin ◽  
Vitaliy Voronko ◽  
Denis Ponkratov ◽  
Serhii Ostashevskyi ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 304
Author(s):  
Anna Pernestål ◽  
Albin Engholm ◽  
Marie Bemler ◽  
Gyözö Gidofalvi

Road freight transport is a key function of modern societies. At the same time, road freight transport accounts for significant emissions. Digitalization, including automation, digitized information, and artificial intelligence, provide opportunities to improve efficiency, reduce costs, and increase service levels in road freight transport. Digitalization may also radically change the business ecosystem in the sector. In this paper, the question, “How will digitalization change the road freight transport landscape?” is addressed by developing four exploratory future scenarios, using Sweden as a case study. The results are based on input from 52 experts. For each of the four scenarios, the impacts on the road freight transport sector are investigated, and opportunities and barriers to achieving a sustainable transportation system in each of the scenarios are discussed. In all scenarios, an increase in vehicle kilometers traveled is predicted, and in three of the four scenarios, significant increases in recycling and urban freight flows are predicted. The scenario development process highlighted how there are important uncertainties in the development of the society that will be highly important for the development of the digitized freight transport landscape. One example is the sustainability paradigm, which was identified as a strategic uncertainty.


Author(s):  
Giacomo Dalla Chiara ◽  
Klaas Fiete Krutein ◽  
Andisheh Ranjbari ◽  
Anne Goodchild

As e-commerce and urban deliveries spike, cities grapple with managing urban freight more actively. To manage urban deliveries effectively, city planners and policy makers need to better understand driver behaviors and the challenges they experience in making deliveries. In this study, we collected data on commercial vehicle (CV) driver behaviors by performing ridealongs with various logistics carriers. Ridealongs were performed in Seattle, Washington, covering a range of vehicles (cars, vans, and trucks), goods (parcels, mail, beverages, and printed materials), and customer types (residential, office, large and small retail). Observers collected qualitative observations and quantitative data on trip and dwell times, while also tracking vehicles with global positioning system devices. The results showed that, on average, urban CVs spent 80% of their daily operating time parked. The study also found that, unlike the common belief, drivers (especially those operating heavier vehicles) parked in authorized parking locations, with only less than 5% of stops occurring in the travel lane. Dwell times associated with authorized parking locations were significantly longer than those of other parking locations, and mail and heavy goods deliveries generally had longer dwell times. We also identified three main criteria CV drivers used for choosing a parking location: avoiding unsafe maneuvers, minimizing conflicts with other users of the road, and competition with other commercial drivers. The results provide estimates for trip times, dwell times, and parking choice types, as well as insights into why those decisions are made and the factors affecting driver choices.


2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879323
Author(s):  
Lei Zhao ◽  
Hongzhi Guan ◽  
Xinjie Zhang ◽  
Xiongbin Wu

In this study, a stochastic user equilibrium model on the modified random regret minimization is proposed by incorporating the asymmetric preference for gains and losses to describe its effects on the regret degree of travelers. Travelers are considered to be capable of perceiving the gains and losses of attributes separately when comparing between the alternatives. Compared to the stochastic user equilibrium model on the random regret minimization model, the potential difference of emotion experienced induced by the loss and gain in the equal size is jointly caused by the taste parameter and loss aversion of travelers in the proposed model. And travelers always tend to use the routes with the minimum perceived regret in the travel decision processes. In addition, the variational inequality problem of the stochastic user equilibrium model on the modified random regret minimization model is given, and the characteristics of its solution are discussed. A route-based solution algorithm is used to resolve the problem. Numerical results given by a three-route network show that the loss aversion produces a great impact on travelers’ choice decisions and the model can more flexibly capture the choice behavior than the existing models.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiangjun Jiang ◽  
Zhongxiang Huang ◽  
Zhenyu Zhao

Based on the price-quantity adjustment behaviour principle of disequilibrium theory, the route choices of travellers are also affected by a quantity signal known as traffic flow, while the route cost is considered as a price signal in economics. Considering the quantity signal’s effect among travellers, a new route comfort choice behaviour criterion and its corresponding equilibrium condition are established. The network travellers are classified into three groups according to their route choice behaviour: travellers in the first group choose the shortest route following the route rapidity behaviour criterion with complete information forming the UE (user equilibrium) pattern, travellers in the second group choose the most comfortable route following the route comfort behaviour criterion with complete information forming the QUE (quantity adjustment user equilibrium) pattern, and travellers in the third group choose a route according to their perceived travel time with incomplete information forming the SUE (stochastic user equilibrium) pattern. The traffic flows of all three groups converge to a new UE-QUE-SUE mixed equilibrium flow pattern after interaction. To depict the traveller-diversified choice behaviour and the traffic flow interaction process, a mixed equilibrium traffic flow evolution model is formulated. After defining the route comfort indicator and the corresponding user equilibrium state, the equilibrium conditions of the three group flows are given under a mixed equilibrium pattern. In addition, an equivalent mathematical programming of the mixed equilibrium traffic flow evolution model is proposed to demonstrate that the developed model converges to the mixed equilibrium state. Finally, numerical examples are examined to evaluate the effect of route comfort proportions on the traffic network flow evolution and analyse the performance of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document