Широкое применение круглопильных станков в лесопильной и деревообрабатывающей промышленности обусловлено их высокой производительностью, простотой, надежностью конструкции, низкой энергоемкостью. Для повышения полезного выхода пилопродукции применяют тонкие пилы. Существенным недостатком, ограничивающим использование таких пил, является их недостаточная жесткость и устойчивость во время работы. Для повышения изгибной жесткости круглой пилы применяются щелевые, роликовые, аэростатические и электромагнитные направляющие. Большинство направляющих создают сопротивление вращению диска пилы. К недостаткам круглопильных станков следует отнести механические потери при передаче крутящего момента от двигателя диску пилы. Колебания диска круглой пилы во время работы являются еще одним недостатком тонких круглых пил, которые снижают качество обработки древесины, приводят к поломкам пил и повышенному уровню шума. Для увеличения надежности узла резания, стабилизации диска пилы во время работы, уменьшения колебаний пильного диска предложено использовать линейный асинхронный дугостаторный двигатель (ЛАДД), ротором в котором является сама круглая пила. Для проверки разработанной математической модели ЛАДД с круглой пилой в качестве ротора была создана экспериментальная установка. Целью работы явилась экспериментальная оценка математической модели и анализ рабочих и механических характеристик ЛАДД, характеристики холостого хода и короткого замыкания двигателя, зависимости мощности и cos ϕ от скольжения. Экспериментально установлено влияние электропроводности диска пилы на эффективность ЛАДД. Для увеличения тягового усилия предложено нанести на боковые поверхности диска пилы материал с высокой электропроводностью (медь). Проведенный эксперимент показал существенное увеличение тягового усилия для диска пилы с покрытием медью. Установленная экспериментально величина магнитной индукции в воздушном зазоре ЛАДД показала корректное совпадение с результатами расчетов по разработанной математической модели.
The circular saws are widespread in sawmill and woodworking industry due to their high productivity, simplicity, design reliability, and low energy consumption. Thin saws are used to increase the effective yield of sawn timber. The insufficient rigidity and stability during operation of such saws limit their use. Slotted, roller, aerostatic and electromagnetic guides are applied to increase the bending stiffness of a circular saw. Most such guides create resistance to the rotation of the saw blade. Mechanical losses during the torque transmission from the motor to the saw blade is one of the circular saws disadvantages. Another disadvantage of thin circular saws is vibration of the circular saw blade during operation, which reduce the quality of wood processing, lead to the saw crashes and increased noise levels. It is proposed to use a linear induction arc-stator motor (LIASM), implementing the circular saw is the rotor, to increase the reliability of the cutting unit, stabilize the saw blade during operation, and reduce the oscillations of the saw blade. The experimental setup was created to analyze the developed mathematical model of a LIASM with a circular saw as a rotor. The aim of the work is the experimental evaluation of the mathematical model and the analysis of operating and mechanical LIASM characteristics, idling and short-circuit characteristics of the motor, the dependence of power and cos ϕ on slip. The influence of the saw blade electrical conductivity on the efficiency of the LIASM has been experimentally established. It was proposed to apply a material with high electrical conductivity (copper) on the side surfaces of the saw blade to increase the tractive effort of the drive. The carried-out experiment showed a significant increase in the tractive effort for a copper-coated saw blade. The experimentally established values of the magnetic induction in the air gap of the LIASM showed good coincidence with the calculated results from the developed mathematical model.