scholarly journals Effect of the Circular Saw-Blade Type and Wear on the Cutting Quality of a Glass–Carbon-Fiber Hybrid Composite

Author(s):  
Jong-Hyun Baek ◽  
◽  
Chang-Min Joo ◽  
Su-Jin Kim ◽  
Yoon-Ok Park
2014 ◽  
Vol 496-500 ◽  
pp. 222-226 ◽  
Author(s):  
Xin Tan ◽  
Hu Huang ◽  
Lin Chen ◽  
Qing Bin Zhang

During the sawing process of cold sawing machine, it emergences of blade wear too fast, the current is too large, sawing not high quality of rolled products,Be aimed at those problem, the paper established the finite element of side shake structure saw blade and ordinary flat blade model, and using the ANSYS finite element analysis software to make the dynamics calculation about the two kinds of saw blade. Through the analysis and comparison of backlash saw blade and natural frequency, different cutting parameters effect of stress and deformation of the saw tooth transient, and the simulation results will be applied to the field of sawing testsThe results show that the backlash saw blade in the vibration characteristics, performance and other aspects of the force and deformation are improved compared with the ordinary blade


2011 ◽  
Vol 228-229 ◽  
pp. 484-489
Author(s):  
Xiao Ling Wang ◽  
Zhong Jun Yin ◽  
Chao Zhang

Thinner saw blades cannot resist large lateral cutting forces due to their lower stiffness. In this paper we propose a composite reinforcement method to improve the mechanical properties of circular saw blades. We analyze and simulate the stress and strain fields of our proposed reinforced circular saws by Finite element method. Our analytical results contain not only influences of reinforcing parameters but also loading conditions on the lateral stiffness and the natural frequency of composite saw blades. Here the reinforcing parameters include: 1) the reinforcement location on circular saw blades, 2) the volume fraction of the reinforcements, 3) the number of the reinforcements; and loading conditions include: 1) the cutting force, 2) the rotational speed. Our composite reinforcement model and simulation results can contribute to a better design of circular saw blades.


2006 ◽  
Vol 532-533 ◽  
pp. 321-324 ◽  
Author(s):  
Shan Shan Hu ◽  
Cheng Yong Wang ◽  
Bang Dao Chen ◽  
Ying Ning Hu

Three kind of diamond circular saw blade with different structure parameters are designed in this paper. Adopted single-factor test, sawing force and vibration are measured by cutting several kinds of strength concrete in different cutting parameters. The analysis to characters of sawing force and vibration helps to find out optimum structure of diamond saw blade with different segment width, more rational sawing parameter and its adaptability to workpiece material.


2015 ◽  
Vol 66 (2) ◽  
pp. 123-128
Author(s):  
Ján Svoreň ◽  
Ľubomír Javorek ◽  
Adam Droba ◽  
Dušan Paulíny

2014 ◽  
Vol 614 ◽  
pp. 32-35 ◽  
Author(s):  
Ming Song Zhang ◽  
Yi Zhang ◽  
Jian Jun Ke ◽  
Xiao Wei Li ◽  
Lian Bing Cheng

The finite element method was used to study tangential roller method impact on the stability of circular saw blade. Using 30 ° cyclic symmetric model is analyzed. The results show that the tension of the saw blade is not the same, and tensioning effect is different, when the tangential roller pressure is not same. At the same time, after tangential roller, the face run out of saw blade is small, which show that the smoothness of tangential roller is better.


2013 ◽  
Vol 444-445 ◽  
pp. 129-133 ◽  
Author(s):  
Ming Song Zhang ◽  
Pu Xian Zhu ◽  
Jian Jun Ke ◽  
Yi Kuan Zhu

The finite element modal analysis was used to study natural frequency of circular saw blade, when slotted. Finding the frequency of slotted is smaller than no slotted saw blade, showing that slot can have the effect of noise attenuation. The increasing of slot length, slot width, slot position, slot number can reduce the natural frequency of circular saw blade on the whole. The orthogonal text was used to study slot parameters. Finding that slot parameters’ influence of primary and secondary relations on saw blade first five natural frequency is slot position > slot number> slot length > slot width.


Sign in / Sign up

Export Citation Format

Share Document