How the frontal cortex is anatomically and functionally organized to control cognition remains puzzling. Numerous non-invasive brain imaging studies relate cognitive control to a localized set of frontal regions, part of a wider fronto-parietal network (FPN), that show increases in functional MRI (fMRI) signal during the performance of multiple cognitively demanding tasks. Lesions implicating frontal control regions lead to disorganized behaviour. However, the fMRI BOLD signal is an indirect measure of neuronal activity and represents evidence from a single modality. This has led to limited clinical translation of fMRI findings e.g. to guide the surgical resection of brain tumours. Here we sought supporting evidence for lateral frontal control regions using electrocorticography (ECoG). We recorded electrophysiological activity from electrodes placed on the lateral frontal cortex in patients undergoing awake craniotomy for glioma resection. During surgery, patients performed two verbal executive-related counting tasks with a difficulty level manipulation, closely adapting difficulty manipulations in fMRI studies of cognitive control. We performed spectral analysis focusing on the gamma range (30-250 Hz) due to mounting evidence of its value as an index of local cortical processing. Comparing hard versus easy demands revealed circumscribed frontal regions with power increases in the gamma range. This contrasted with spatially distributed power decreases in the beta range (12-30 Hz). Further, electrodes showing significant gamma power increases were more likely to occur within a canonical fMRI-defined FPN and showed stronger gamma power increases compared to electrodes outside the FPN, even at the single patient level. Reinforcing the need for careful task manipulation, an easy versus baseline comparison, which includes factors such as speech output, produced gamma changes over a wider area. Thus, using similar task difficulty manipulations, ECoG and fMRI signals converged on delineating lateral frontal control regions. These findings open the door for extending clinical functional mapping to the domain of cognitive control during awake neurosurgery.