putative species
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 67)

H-INDEX

22
(FIVE YEARS 3)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Michal Motyka ◽  
Dominik Kusy ◽  
Matej Bocek ◽  
Renata Bilkova ◽  
Ladislav Bocak

Conservation efforts must be evidence-based, so rapid and economically feasible methods should be used to quantify diversity and distribution patterns. We have attempted to overcome current impediments to the gathering of biodiversity data by using integrative phylogenomic and three mtDNA fragment analyses. As a model, we sequenced the Metriorrhynchini beetle fauna, sampled from ~700 localities in three continents. The species-rich dataset included ~6,500 terminals, ~1,850 putative species delimited at 5% uncorrected pairwise threshold, possibly ~1,000 of them unknown to science. Neither type of data could alone answer our questions on biodiversity and phylogeny. The phylogenomic backbone enabled the integrative delimitation of robustly defined natural genus-group units that will inform future research. Using constrained mtDNA analysis, we identified the spatial structure of species diversity, very high species-level endemism, and a biodiversity hotspot in New Guinea. We suggest that focused field research and subsequent laboratory and bioinformatic workflow steps would substantially accelerate the inventorying of any hyperdiverse tropical group with several thousand species. The outcome would be a scaffold for the incorporation of further data from environmental sequencing and ecological studies. The database of sequences could set a benchmark for the spatiotemporal evaluation of biodiversity, would support evidence-based conservation planning, and would provide a robust framework for systematic, biogeographic, and evolutionary studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Lienhard ◽  
Günther Krisper

AbstractA challenge for taxonomists all over the world and across all taxonomic groups is recognizing and delimiting species, and cryptic species are even more challenging. However, an accurate identification is fundamental for all biological studies from ecology to conversation biology. We used a multidisciplinary approach including genetics as well as morphological and ecological data to assess if an easily recognizable, widely distributed and euryoecious mite taxon represents one and the same species. According to phylogenetic (based on mitochondrial and nuclear genes) and species delimitation analyses, five distinct putative species were detected and supported by high genetic distances. These genetic lineages correlate well with ecological data, and each species could be associated to its own (micro)habitat. Subsequently, slight morphological differences were found and provide additional evidence that five different species occur in Central and Southern Europe. The minuteness and the characteristic habitus of Caleremaeus monilipes tempted to neglect potential higher species diversity. This problem might concern several other “well-known” euryoecious microarthropods. Five new species of the genus Caleremaeus are described, namely Caleremaeus mentobellus sp. nov., C. lignophilus sp. nov., C. alpinus sp. nov., C. elevatus sp. nov., and C. hispanicus sp. nov. Additionally, a morphological evaluation of C. monilipes is presented.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Brian P. Bourke ◽  
Silvia A. Justi ◽  
Laura Caicedo-Quiroga ◽  
David B. Pecor ◽  
Richard C. Wilkerson ◽  
...  

Abstract Background Some of the most important malaria vectors in South America belong to the Albitarsis Complex (Culicidae; Anophelinae; Anopheles). Understanding the origin, nature, and geographical distribution of species diversity in this important complex has important implications for vector incrimination, control, and management, and for modelling future responses to climate change, deforestation, and human population expansion. This study attempts to further explore species diversity and evolutionary history in the Albitarsis Complex by undertaking a characterization and phylogenetic analysis of the mitogenome of all 10 putative taxa in the Albitarsis Complex. Methods Mitogenome assembly and annotation allowed for feature comparison among Albitarsis Complex and Anopheles species. Selection analysis was conducted across all 13 protein-coding genes. Maximum likelihood and Bayesian inference methods were used to construct gene and species trees, respectively. Bayesian methods were also used to jointly estimate species delimitation and species trees. Results Gene composition and order were conserved across species within the complex. Unique signatures of positive selection were detected in two species—Anopheles janconnae and An. albitarsis G—which may have played a role in the recent and rapid diversification of the complex. The COI gene phylogeny does not fully recover the mitogenome phylogeny, and a multispecies coalescent-based phylogeny shows that considerable uncertainty exists through much of the mitogenome species tree. The origin of divergence in the complex dates to the Pliocene/Pleistocene boundary, and divergence within the distinct northern South American clade is estimated at approximately 1 million years ago. Neither the phylogenetic trees nor the delimitation approach rejected the 10-species hypothesis, although the analyses could not exclude the possibility that four putative species with scant a priori support (An. albitarsis G, An. albitarsis H, An. albitarsis I, and An. albitarsis J), represent population-level, rather than species-level, splits. Conclusion The lack of resolution in much of the species tree and the limitations of the delimitation analysis warrant future studies on the complex using genome-wide data and the inclusion of additional specimens, particularly from two putative species, An. albitarsis I and An. albitarsis J. Graphical Abstract


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 622
Author(s):  
Klemen Čandek ◽  
Ingi Agnarsson ◽  
Greta J. Binford ◽  
Matjaž Kuntner

Dispersal ability can affect levels of gene flow thereby shaping species distributions and richness patterns. The intermediate dispersal model of biogeography (IDM) predicts that in island systems, species diversity of those lineages with an intermediate dispersal potential is the highest. Here, we tested this prediction on long-jawed spiders (Tetragnatha) of the Caribbean archipelago using phylogenies from a total of 318 individuals delineated into 54 putative species. Our results support a Tetragnatha monophyly (within our sampling) but reject the monophyly of the Caribbean lineages, where we found low endemism yet high diversity. The reconstructed biogeographic history detects a potential early overwater colonization of the Caribbean, refuting an ancient vicariant origin of the Caribbean Tetragnatha as well as the GAARlandia land-bridge scenario. Instead, the results imply multiple colonization events to and from the Caribbean from the mid-Eocene to late-Miocene. Among arachnids, Tetragnatha uniquely comprises both excellently and poorly dispersing species. A direct test of the IDM would require consideration of three categories of dispersers; however, long-jawed spiders do not fit one of these three a priori definitions, but rather represent a more complex combination of attributes. A taxon such as Tetragnatha, one that readily undergoes evolutionary changes in dispersal propensity, can be referred to as a ‘dynamic disperser’.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei-Han Shao ◽  
Jian-Li Cheng ◽  
E Zhang

There is increasing evidence that species diversity is underestimated in the current taxonomy of widespread freshwater fishes. The bagrid species T. albomarginatus s.l. is mainly distributed in the lowlands of South China, as currently identified. A total of 40 localities (including the type locality), which covers most of its known range, were sampled. Molecular phylogenetic analyses based on concatenated mtDNA and nuclear genes recover nine highly supported lineages clustering into eight geographic populations. The integration of molecular evidence, morphological data, and geographic distribution demonstrates the delineation of T. albomarginatus s.l. as eight putative species. Four species, namely, T. albomarginatus, T. lani, T. analis, and T. zhangfei sp. nov. and the T. similis complex are taxonomically recognized herein. Moreover, T. zhangfei sp. nov. comprises two genetically distinct lineages with no morphological and geographical difference. This study also reveals aspects of estimation of divergence time, distribution, and ecological adaption within the T. albomarginatus group. The unraveling of the hidden species diversity of this lowland bagrid fish highlights the need for not only the molecular scrutiny of widely distributed species of South China but also the adjustment of current biodiversity conservation strategies to protect the largely overlooked diversity of fishes from low-elevation rapids.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12283
Author(s):  
Oldřich Říčan ◽  
Klára Dragová ◽  
Adriana Almirón ◽  
Jorge Casciotta ◽  
Jens Gottwald ◽  
...  

Crenicichla is the largest and most widely distributed genus of Neotropical cichlids. Here, we analyze a mtDNA dataset comprising 681 specimens (including Teleocichla, a putative ingroup of Crenicichla) and 77 out of 105 presently recognized valid species (plus 10 out of 36 nominal synonyms plus over 50 putatively new species) from 129 locations in 31 major river drainages throughout the whole distribution of the genus in South America. Based on these data we make an inventory of diversity and highlight taxa and biogeographic areas worthy of further sampling effort and conservation protection. Using three methods of molecular species delimitation, we find between 126 and 168 species-like clusters, i.e., an average increase of species diversity of 65–121% with a range of increase between species groups. The increase ranges from 0% in the Missioneira and Macrophthama groups, through 25–40% (Lacustris group), 50–87% (Reticulata group, Teleocichla), 68–168% (Saxatilis group), 125–200% (Wallacii group), and 158–241% in the Lugubris group. We found a high degree of congruence between clusters derived from the three used methods of species delimitation. Overall, our results recognize substantially underestimated diversity in Crenicichla including Teleocichla. Most of the newly delimited putative species are from the Amazon-Orinoco-Guiana (AOG) core area (Greater Amazonia) of the Neotropical region, especially from the Brazilian and Guiana shield areas of which the former is under the largest threat and largest degree of environmental degradation of all the Amazon.


2021 ◽  
Author(s):  
Sofia I Sheikh ◽  
Anna K G Ward ◽  
Yuanmeng Miles Zhang ◽  
Charles K Davis ◽  
Linyi Zhang ◽  
...  

Several recent reappraisals of supposed generalist parasite species have revealed hidden complexes of species, each with considerably narrower host ranges. Parasitic wasps that attack gall-forming insects on plants have life history strategies that are thought to promote specialization, and though many species are indeed highly specialized, others have been described as generalist parasites. Ormyrus labotus Walker (Hymenoptera: Ormyridae) is one such apparent generalist, with rearing records spanning more than 65 host galls associated with a diverse set of oak tree species and plant tissues. We pair a molecular approach with morphology, host ecology, and phenological data from across a wide geographic sample to test the hypothesis that this supposed generalist is actually a complex of several more specialized species, though we identify no single unifying axis of specialization. We find 16-18 putative species within the morphological species O. labotus, each reared from only 1-6 host gall types. We also find cryptic habitat specialists within two other named Ormyrus species. Our study suggests that caution should be applied when considering host ranges of parasitic insects described solely by morphological traits, particularly given their importance as biocontrol organisms and their role in biodiversity and evolutionary studies.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 513
Author(s):  
Adrián Emmanuel Uh-Navarrete ◽  
Carmen Amelia Villegas-Sánchez ◽  
José Angel Cohuo-Colli ◽  
Ángel Omar Ortíz-Moreno ◽  
Martha Valdez-Moreno

Our work shows the efficacy of DNA barcoding for recognizing the early stages of freshwater fish. We collected 3195 larvae and juveniles. Of them, we identified 43 different morphotypes. After DNA barcodes of 350 specimens, we ascertained 7 orders, 12 families, 19 genera, 20 species, and 20 Barcode Index Numbers, corresponding to putative species. For the first time, we reported the presence of the brackish species, Gobiosoma yucatanum in Lake Bacalar. Specimens of the genus Atherinella sp. and Anchoa sp. are possibly new species. Using both methods, morphology, and DNA barcodes, we identified 95% of the total larvae collected (2953 to species, and 78 to genus), and all of them were native. From them, the order Gobiiformes represented 87%. The most abundant species were Lophogobius cyprinoides and Dormitator maculatus, followed by Gobiosoma yucatanum and Ctenobius fasciatus. The Muyil and Chuyanché lagoons have the highest number of species. We present for the first time a short description of Cyprinodon artifrons and Floridichthys polyommus. This information conforms an indispensable baseline for ecological monitoring, to evaluate impacts, and developing management and conservation plans of biodiversity, principally in areas under human pressure such as Sian Ka’an, and Lake Bacalar, where tourism is high and growing in disorder.


2021 ◽  
Vol 9 ◽  
Author(s):  
Luigi Colin ◽  
Chris Yesson ◽  
Catherine Head

We present the first mitochondrial genomes from Chagos Archipelago, Indian Ocean, of three putative species of reef forming Acropora (Acropora aff. tenuis, Acropora aff. cytherea and Acropora aff. orbicularis). The circular genome consists respectively of 18,334 bp, 18,353 bp and 18,584 bp. All mitochondrial genomes recovered comprise 13 protein-coding genes, two transfer RNA genes and two ribosomal RNA genes, with an overall GC content ranging from 37.9% to 38.0%. These new genomic data contribute to our increased understanding of genus Acropora and its species boundaries, ultimately aiding species monitoring and conservation efforts.


2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Ulfat Baig ◽  
Neelesh Dahanukar ◽  
Neha Shintre ◽  
Ketki Holkar ◽  
Anagha Pund ◽  
...  

The phylogenetic diversity of cultivable actinobacteria isolated from sponges (Haliclona spp.) and associated intertidal zone environments along the northern parts of the western coast of India were studied using 16S rRNA gene sequences. A subset of randomly selected actinobacterial cultures were screened for three activities, namely predatory behaviour, antibacterial activity and enzyme inhibition. We recovered 237 isolates from the phylum Actinobacteria belonging to 19 families and 28 genera, which could be attributed to 95 putative species using maximum-likelihood partition and 100 putative species using Bayesian partition in Poisson tree processes. Although the trends in the discovery of actinobacterial genera isolated from sponges were consistent with previous studies from different study areas, we provide the first report of nine actinobacterial species from sponges. We observed widespread non-obligate epibiotic predatory behaviour in eight actinobacterial genera and we provide the first report of predatory activity in Brevibacterium , Glutamicibacter , Micromonospora , Nocardiopsis , Rhodococcus and Rothia . Sponge-associated actinobacteria showed significantly more predatory behaviour than environmental isolates. While antibacterial activity by actinobacterial isolates mainly affected Gram-positive target bacteria with little or no effect on Gram-negative bacteria, predation targeted both Gram-positive and Gram-negative prey with equal propensity. Actinobacterial isolates from both sponges and associated environments produced inhibitors of serine proteases and angiotensin-converting enzyme. Predatory behaviour was strongly associated with inhibition of trypsin and chymotrypsin. Our study suggests that the sponges and associated environments of the western coast of India are rich in actinobacterial diversity, with widespread predatory activity, antibacterial activity and production of enzyme inhibitors. Understanding the diversity and associations among various actinobacterial activities – with each other and the source of isolation – can provide new insights into marine microbial ecology and provide opportunities to isolate novel therapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document