stress mode
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Joshua Stroh ◽  
Dimitry Sediako ◽  
Anthony Lombardi ◽  
Glenn Byczynski ◽  
Mark Reid ◽  
...  

Abstract The cumulative global emissions produced by the automotive industry over the last decade has put a tremendous strain on the environment. Consequently, automotive engineers and manufacturers have been forced to improve the efficiencies of their automobiles which is frequently accomplished by increasing the operating pressure, and therefore temperature, of the combustion engine. Unfortunately, in addition to the rise in operational pressures and temperatures, large tensile residual stresses often accumulate in the cylinder bridges during the casting process of aluminum engine blocks due to the use of cast-in iron cylinder liners, leading to combined stress magnitudes above the strength of the currently used aluminum alloys. Thus, the present study aims to characterize the evolution of residual stress, with application of neutron diffraction, at several critical stages of the manufacturing process of sand-cast aluminum engine blocks that have eliminated the iron cylinder liners from the casting process and replaced them with cylinder bore chills that are pressed-out after the thermal sand reclamation process. The replacement of the iron liners shifted the stress mode from purely tension to purely compression until the bore chills were removed. Following removal of the bore chills, the maximum tensile stress at the top of the cylinder bridge was ~70% lower than the engine’s predecessor which was produced with iron liners. Moreover, in the production-ready state (i.e., T7 heat treated, machined and press-fit liners inserted), the stress mode maintains the partially compressive nature with low magnitudes of tension, thereby lowering the material’s susceptibility to crack growth and propagation.


2021 ◽  
pp. 287-304
Author(s):  
Souvik Mahapatra ◽  
Narendra Parihar ◽  
Nilesh Goel ◽  
Nilotpal Choudhury ◽  
Tarun Samadder ◽  
...  
Keyword(s):  

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 594
Author(s):  
Anja Pfennig ◽  
Marcus Wolf ◽  
Axel Kranzmann

Static immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4, and X5CrNiCuNb16-4 at T = 60 °C and ambient pressure, as well as p = 100 bar were performed for 700–8000 h in a CO2-saturated synthetic aquifer environment similar to CCS sites in the Northern German Basin (NGB). Corrosion rates at 100 bar are generally lower than at ambient pressure. The main corrosion products are FeCO3 and FeOOH with surface and local corrosion phenomena directly related to the alloy composition and microstructure. The appropriate heat treatment enhances corrosion resistance. The lifetime reduction of X46Cr13, X5CrNiCuNb16-4, and duplex stainless steel X2CrNiMoN22-5-3 in a CCS environment is demonstrated in the in situ corrosion fatigue CF experiments (axial push-pull and rotation bending load, 60 °C, brine: Stuttgart Aquifer and NGB, flowing CO2: 30 L/h, +/− applied potential). Insulating the test setup is necessary to gain reliable data. S-N plots, micrographic-, phase-, fractographic-, and surface analysis prove that the life expectancy of X2CrNiMoN22-5-3 in the axial cyclic load to failure is clearly related to the surface finish, applied stress amplitude, and stress mode. The horizontal grain attack within corrosion pit cavities, multiple fatigue cracks, and preferable deterioration of austenitic phase mainly cause fatigue failure. The CF life range increases significantly when a protective potential is applied.


2020 ◽  
Vol 1014 ◽  
pp. 14-21
Author(s):  
Wen Kai Yue ◽  
Zhi Min Li ◽  
Xiao Wei Zhou ◽  
Jin Xing Wu ◽  
Pei Xian Li

In this study, the effect of a high-temperature annealing process on AlN is investigated. The high-temperature annealing process reduces the screw dislocation density of the AlN film to 2.1x107 cm-2. The AlN surface is highly flat. Through HRXRD and Raman spectroscopy, the stress mode changes in the sputtered AlN film before and after high-temperature annealing were studied in depth. Based on the HTA-AlN template, a high-quality, high-Al composition AlGaN epitaxial wafer, with a (0002) plane rocking curve FWHM of 246 arcsec , was prepared at 1080°C The growth mode of AlGaN grown directly on the AlN template at low temperature is summarized.


2020 ◽  
Vol 861 ◽  
pp. 524-528
Author(s):  
Khairum Bin Hamzah ◽  
Nik Mohd Asri Nik Long

The various mode of stresses for the interaction between two inclined cracks in the upper part of bonded two half planes which are normal stress (Mode I), shear stress (Mode II), tearing stress (Mode III) and mixed stress was studied. For this problem, the modified complex potentials (MCPs) method was used to develop the new system of hypersingular integral equations (HSIEs) by applying the conditions for continuity of resultant force and displacement functions with the unknown variable of crack opening displacement (COD) function and the right hand terms are the tractions along the crack. The curve length coordinate method and Gauss quadrature rules were used to solve numerically the obtained HSIEs to compute the stress intensity factors (SIFs) in order to determine the strength of the materials containing cracks. Numerical solutions presented the characteristic of nondimensional SIFs at the cracks tips. It is obtained that the various stresses and the elastic constants ratio are influences to the value of nondimensional SIFs at the crack tips.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1464
Author(s):  
Shanshan Zhu ◽  
Jinlian Hu

Wool has a long history of use in textiles throughout human civilization. Many smart functions such as reversible shape changes to various stimuli have been demonstrated in the last few years. However, the force-related characteristics are still imperfectly recognized, although they are expected to be used as actuators due to their biological origins and broad applications. Herein, we investigated the feasibility of wools in performing actuating ability through its intrinsic structures and fabrication methods. The diverse modes of contractive forces were obtained in wool materials including platform-like, double-peak, and slope-like shapes, where a molecular model was also presented to trace the origins of stress evolution. After that, a polymeric blend was created to modify the wool materials and a dissimilar performance of stress production was achieved, a square stress mode with stable manner and maintenance, for broad applications in a more efficient way. It is believed that these actuating properties extracted from natural hairs have a large potential in current smart applications and lay down new inspiration in designing actuators.


2020 ◽  
Vol 41 (6) ◽  
pp. 804-807
Author(s):  
Seung-Geun Jung ◽  
Sul-Hwan Lee ◽  
Choong-Ki Kim ◽  
Min-Soo Yoo ◽  
Hyun-Yong Yu

2020 ◽  
Vol 40 (7) ◽  
pp. 1673-1686
Author(s):  
Toufik Bettahar ◽  
Chemseddine Rahmoune ◽  
Djamel Benazzouz

Sign in / Sign up

Export Citation Format

Share Document