composite sorbents
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 39)

H-INDEX

20
(FIVE YEARS 4)

Author(s):  
Igor Yu. Zykov ◽  
Nikolay N. Ivanov ◽  
Natalia I. Fedorova ◽  
Zinfer R. Ismagilov

Author(s):  
Safura Satayeva ◽  
Firuza Akhmetova ◽  
Roza Jusupkaliyeva ◽  
Dauriya Nazarova ◽  
Ivan Kazarinov ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7809
Author(s):  
Manca Ocvirk ◽  
Alenka Ristić ◽  
Nataša Zabukovec Logar

The efficiency of thermochemical heat storage is crucially determined by the performance of the sorbent used, which includes a high sorption capacity and a low regeneration temperature. The thermochemical salt hydrate– γ-alumina composite sorbents are promising materials for this application but lack systematic study of the influence of γ-alumina structural properties on the final storage performance. In this study, mesoporous γ-Al2O3 supports were prepared by solvothermal and hydrothermal synthesis containing a block copolymer (F-127) surfactant to design thermochemical CaCl2 and LiCl composite water sorbents. Altering the solvent in the synthesis has a significant effect on the structural properties of the γ-Al2O3 mesostructure, which was monitored by powder XRD, nitrogen physisorption, and SEM. Solvothermal synthesis led to a formation of mesoporous γ-Al2O3 with higher specific surface area (213 m2/g) and pore volume (0.542 g/cm3) than hydrothermal synthesis (147 m2/g; 0.414 g/cm3). The highest maximal water sorption capacity (2.87 g/g) and heat storage density (5.17 GJ/m3) was determined for W-46-LiCl containing 15 wt% LiCl for space heating, while the best storage performance in the sense of fast kinetics of sorption, without sorption hysteresis, low desorption temperature, very good cycling stability, and energy storage density of 1.26 GJ/m3 was achieved by W-46-CaCl2.


2021 ◽  
Vol 55 (2 (255)) ◽  
pp. 125-135
Author(s):  
Sergey S. Hayrapetyan ◽  
Martin S. Hayrapetyan ◽  
Armen I. Martiryan ◽  
Hranoush H. Darbinyan ◽  
Hambardzum H. Khachatryan

The sorption properties of organomineral composite sorbents have been investigated by ICP-MS method. The diatomite of the Jradzor deposit and bentonite of the Sarigyuh deposit (Armenia) were used as inorganic constituents. Diatomite serves as a structure-forming component and provides mass transfer due to its high porosity (V = 2.0 cm3/g) and large pore sizes (150–200 nm). Bentonite is responsible for the functionality of the sorbents. The organic component is also responsible for the functionality of the obtained sorbents. Paper pretreated with acids (nitric and phosphoric) was used as an organic component. A synthetic solution containing cations of heavy metals was used as an object of study. The experiments were carried out in static mode on a Jar-Test device.


2021 ◽  
Vol 229 ◽  
pp. 111118
Author(s):  
Jingjing Zhu ◽  
Can Gao ◽  
Fanhe Kong ◽  
Kai Zhang ◽  
Zhiqing Bai ◽  
...  

Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 103
Author(s):  
Maria Valentina Dinu ◽  
Doina Humelnicu ◽  
Maria Marinela Lazar

With the intensive industrial activity worldwide, water pollution by heavy metal ions (HMIs) has become a serious issue that requires strict and careful monitoring, as they are extremely toxic and can cause serious hazards to the environment and human health. Thus, the effective and efficient removal of HMIs still remains a challenge that needs to be solved. In this context, copper(II), cobalt(II) and iron(III) sorption by chitosan (CS)-based composite sponges was systematically investigated in binary and ternary systems. The composites sponges, formed into beads, consisting of ethylenediaminetetraacetic acid (EDTA)- or diethylenetriaminepentaacetic acid (DTPA)-functionalized CS, entrapping a natural zeolite (Z), were prepared through an ice-segregation technique. The HMI sorption performance of these cryogenically structured composite materials was assessed through batch experiments. The HMI sorption capacities of CSZ-EDTA and CSZ-DTPA composite sponges were compared to those of unmodified sorbents. The Fe(III) ions were mainly taken up when they were in two-component mixtures with Co(II) ions at pH 4, whereas Cu(II) ions were preferred when they were in two-component mixtures with Co(II) ions at pH 6. The recycling studies indicated almost unchanged removal efficiency for all CS-based composite sorbents even after the fifth cycle of sorption/desorption, supporting their remarkable chemical stability and recommending them for the treatment of HMI-containing wastewaters.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1513
Author(s):  
Yuezhou Wei ◽  
Khalid A. M. Salih ◽  
Mohammed F. Hamza ◽  
Toyohisa Fujita ◽  
Enrique Rodríguez-Castellón ◽  
...  

High-tech applications require increasing amounts of rare earth elements (REE). Their recovery from low-grade minerals and their recycling from secondary sources (as waste materials) are of critical importance. There is increasing attention paid to the development of new sorbents for REE recovery from dilute solutions. A new generation of composite sorbents based on brown algal biomass (alginate) and polyethylenimine (PEI) was recently developed (ALPEI hydrogel beads). The phosphorylation of the beads strongly improves the affinity of the sorbents for REEs (such as La and Tb): by 4.5 to 6.9 times compared with raw beads. The synthesis procedure (epicholorhydrin-activation, phosphorylation and de-esterification) is investigated by XPS and FTIR for characterizing the grafting route but also for interpreting the binding mechanism (contribution of N-bearing from PEI, O-bearing from alginate and P-bearing groups). Metal ions can be readily eluted using an acidic calcium chloride solution, which regenerates the sorbent: the FTIR spectra are hardly changed after five successive cycles of sorption and desorption. The materials are also characterized by elemental, textural and thermogravimetric analyses. The phosphorylation of ALPEI beads by this new method opens promising perspectives for the recovery of these strategic metals from mild acid solutions (i.e., pH ~ 4).


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 476
Author(s):  
Vincenza Brancato ◽  
Larisa G. Gordeeva ◽  
Angela Caprì ◽  
Alexandra D. Grekova ◽  
Andrea Frazzica

In this study, the development and comparative characterization of different composite sorbents for thermal energy storage applications is reported. Two different applications were targeted, namely, low-temperature space heating (SH) and domestic hot water (DHW) provision. From a literature analysis, the most promising hygroscopic salts were selected for these conditions, being LiCl for SH and LiBr for DHW. Furthermore, two mesoporous silica gel matrixes and a macroporous vermiculite were acquired to prepare the composites. A complete characterization was performed by investigating the porous structure of the composites before and after impregnation, through N2 physisorption, as well as checking the phase composition of the composites at different temperatures through X-ray powder diffraction (XRD) analysis. Furthermore, sorption equilibrium curves were measured in water vapor atmosphere to evaluate the adsorption capacity of the samples and a detailed calorimetric analysis was carried out to evaluate the reaction evolution under real operating conditions as well as the sorption heat of each sample. The results demonstrated a slower reaction kinetic in the vermiculite-based composites, due to the larger size of salt grains embedded in the pores, while promising volumetric storage densities of 0.7 GJ/m3 and 0.4 GJ/m3 in silica gel-based composites were achieved for SH and DHW applications, respectively.


Sign in / Sign up

Export Citation Format

Share Document