linear creep
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Kleyser Ribeiro ◽  
Daniel Domingues Loriggio ◽  
Mauro de Vasconcellos Real

Abstract To analyze the reliability of slender columns subjected to axial force and uniaxial bending moment, with a slenderness index between 100 and 140, 216 columns were modeled. The square cross-section was adopted, with three different configurations for longitudinal reinforcement. In the calculation, the general method with the linear creep theory was applied. Several factors were varied: slenderness index, reinforcement ratio, steel bars arrangement, compressive strength of concrete, and first-order relative eccentricity. For analysis purposes, the Monte Carlo method was adopted, followed by the First Order Reliability Method (FORM). Considering the results obtained, it was observed that the reliability index is usually higher for lower reinforcement ratios and varies according to the configuration of the cross-section.


Author(s):  
Mahmoud Fadhel Idan

<p>Multiple integral representation (MIR) has been used to represent studying the effect of temperature on the amount of nonlinear creep on the semi- crystalline polypropylene (PP) under the influence of axial elastic stress. To complete this research, the Kernel functions were selected, for the purpose of performing an analogy, and for arranging the conditions for the occurrence of the first, second and third expansion in a temperature range between 20 °C-60 °C, i.e., between the glass transition and softening temperatures, within the framework of the energy law. It was observed that the independent strain time increased non-linearly with increasing stress, and non-linearly decreased with increase in temperature, although the time parameter increased non-linearly with stress and temperature directly. In general, a very satisfactory agreement between theoretical and practical results on the MIR material was observed.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kishan Ramesh Kumar ◽  
Artur Makhmutov ◽  
Christopher J. Spiers ◽  
Hadi Hajibeygi

AbstractA promising option for storing large-scale quantities of green gases (e.g., hydrogen) is in subsurface rock salt caverns. The mechanical performance of salt caverns utilized for long-term subsurface energy storage plays a significant role in long-term stability and serviceability. However, rock salt undergoes non-linear creep deformation due to long-term loading caused by subsurface storage. Salt caverns have complex geometries and the geological domain surrounding salt caverns has a vast amount of material heterogeneity. To safely store gases in caverns, a thorough analysis of the geological domain becomes crucial. To date, few studies have attempted to analyze the influence of geometrical and material heterogeneity on the state of stress in salt caverns subjected to long-term loading. In this work, we present a rigorous and systematic modeling study to quantify the impact of heterogeneity on the deformation of salt caverns and quantify the state of stress around the caverns. A 2D finite element simulator was developed to consistently account for the non-linear creep deformation and also to model tertiary creep. The computational scheme was benchmarked with the already existing experimental study. The impact of cyclic loading on the cavern was studied considering maximum and minimum pressure that depends on lithostatic pressure. The influence of geometric heterogeneity such as irregularly-shaped caverns and material heterogeneity, which involves different elastic and creep properties of the different materials in the geological domain, is rigorously studied and quantified. Moreover, multi-cavern simulations are conducted to investigate the influence of a cavern on the adjacent caverns. An elaborate sensitivity analysis of parameters involved with creep and damage constitutive laws is performed to understand the influence of creep and damage on deformation and stress evolution around the salt cavern configurations. The simulator developed in this work is publicly available at https://gitlab.tudelft.nl/ADMIRE_Public/Salt_Cavern.


Author(s):  
G.I. Janith ◽  
D.A.S. Amarasinghe ◽  
D. Attygalle ◽  
V.S.C Weragoda ◽  
A.M.P.B. Samarasekara

2021 ◽  
Vol 30 ◽  
pp. 131-134
Author(s):  
Jan Vozáb ◽  
Jan Vorel

A preliminary study of a numerical model describing the behaviour of polymer-based composites is presented. The numerical model consists of three main parts. The first is the microplane M4 model, which is the main part of the model and is used to simulate elastoplastic behaviour and damage. The second part consists of a generalized Maxwell model, which adds the effect of linear creep of the material to the calculation. The last part is a free volume model that extends the linear creep to the nonlinear creep. The creep is calculated on the deviatoric part of the normal stress of each microplane, which allows the model to capture the polymer behaviour adequately without adjusting the free volume of the model.


2021 ◽  
Vol 28 (3) ◽  
pp. 954-967
Author(s):  
Jie-lin Li ◽  
Long-yin Zhu ◽  
Ke-ping Zhou ◽  
Hui Chen ◽  
Le Gao ◽  
...  

Author(s):  
S. O. Chepilko ◽  

Problems of taking into account nonlinear creep in steel- reinforced concrete beams are considered basing on the integral equation of viscous-elastic-plasticity of concrete. There has been obtained the resolving system of nonlinear integral equations, a linearization of this system has been carried out, its asymptotic solutions have been written out for the theory of elastic heredity case. The analysis of taking into account nonlinear creep has been performed compared with the linear creep equations and an instantaneous (short-term) loading allowing for concrete’s nonlinear diagram.


Sign in / Sign up

Export Citation Format

Share Document