EURASIP Journal on Information Security
Latest Publications


TOTAL DOCUMENTS

70
(FIVE YEARS 44)

H-INDEX

8
(FIVE YEARS 4)

Published By Springer (Biomed Central Ltd.)

2510-523x

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Jing Lin ◽  
Laurent L. Njilla ◽  
Kaiqi Xiong

AbstractDeep neural networks (DNNs) are widely used to handle many difficult tasks, such as image classification and malware detection, and achieve outstanding performance. However, recent studies on adversarial examples, which have maliciously undetectable perturbations added to their original samples that are indistinguishable by human eyes but mislead the machine learning approaches, show that machine learning models are vulnerable to security attacks. Though various adversarial retraining techniques have been developed in the past few years, none of them is scalable. In this paper, we propose a new iterative adversarial retraining approach to robustify the model and to reduce the effectiveness of adversarial inputs on DNN models. The proposed method retrains the model with both Gaussian noise augmentation and adversarial generation techniques for better generalization. Furthermore, the ensemble model is utilized during the testing phase in order to increase the robust test accuracy. The results from our extensive experiments demonstrate that the proposed approach increases the robustness of the DNN model against various adversarial attacks, specifically, fast gradient sign attack, Carlini and Wagner (C&W) attack, Projected Gradient Descent (PGD) attack, and DeepFool attack. To be precise, the robust classifier obtained by our proposed approach can maintain a performance accuracy of 99% on average on the standard test set. Moreover, we empirically evaluate the runtime of two of the most effective adversarial attacks, i.e., C&W attack and BIM attack, to find that the C&W attack can utilize GPU for faster adversarial example generation than the BIM attack can. For this reason, we further develop a parallel implementation of the proposed approach. This parallel implementation makes the proposed approach scalable for large datasets and complex models.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Michele Russo ◽  
Nedim Šrndić ◽  
Pavel Laskov

AbstractIllicit cryptocurrency mining has become one of the prevalent methods for monetization of computer security incidents. In this attack, victims’ computing resources are abused to mine cryptocurrency for the benefit of attackers. The most popular illicitly mined digital coin is Monero as it provides strong anonymity and is efficiently mined on CPUs.Illicit mining crucially relies on communication between compromised systems and remote mining pools using the de facto standard protocol Stratum. While prior research primarily focused on endpoint-based detection of in-browser mining, in this paper, we address network-based detection of cryptomining malware in general. We propose XMR-Ray, a machine learning detector using novel features based on reconstructing the Stratum protocol from raw NetFlow records. Our detector is trained offline using only mining traffic and does not require privacy-sensitive normal network traffic, which facilitates its adoption and integration.In our experiments, XMR-Ray attained 98.94% detection rate at 0.05% false alarm rate, outperforming the closest competitor. Our evaluation furthermore demonstrates that it reliably detects previously unseen mining pools, is robust against common obfuscation techniques such as encryption and proxies, and is applicable to mining in the browser or by compiled binaries. Finally, by deploying our detector in a large university network, we show its effectiveness in protecting real-world systems.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Stefano Calzavara ◽  
Claudio Lucchese ◽  
Federico Marcuzzi ◽  
Salvatore Orlando

AbstractMachine learning algorithms, however effective, are known to be vulnerable in adversarial scenarios where a malicious user may inject manipulated instances. In this work, we focus on evasion attacks, where a model is trained in a safe environment and exposed to attacks at inference time. The attacker aims at finding a perturbation of an instance that changes the model outcome.We propose a model-agnostic strategy that builds a robust ensemble by training its basic models on feature-based partitions of the given dataset. Our algorithm guarantees that the majority of the models in the ensemble cannot be affected by the attacker. We apply the proposed strategy to decision tree ensembles, and we also propose an approximate certification method for tree ensembles that efficiently provides a lower bound of the accuracy of a forest in the presence of attacks on a given dataset avoiding the costly computation of evasion attacks.Experimental evaluation on publicly available datasets shows that the proposed feature partitioning strategy provides a significant accuracy improvement with respect to competitor algorithms and that the proposed certification method allows ones to accurately estimate the effectiveness of a classifier where the brute-force approach would be unfeasible.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Pavlo Haleta ◽  
Dmytro Likhomanov ◽  
Oleksandra Sokol

AbstractRecently, adversarial attacks have drawn the community’s attention as an effective tool to degrade the accuracy of neural networks. However, their actual usage in the world is limited. The main reason is that real-world machine learning systems, such as content filters or face detectors, often consist of multiple neural networks, each performing an individual task. To attack such a system, adversarial example has to pass through many distinct networks at once, which is the major challenge addressed by this paper. In this paper, we investigate multitask adversarial attacks as a threat for real-world machine learning solutions. We provide a novel black-box adversarial attack, which significantly outperforms the current state-of-the-art methods, such as Fast Gradient Sign Attack (FGSM) and Basic Iterative Method (BIM, also known as Iterative-FGSM) in the multitask setting.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Christian Kraetzer ◽  
Andrey Makrushin ◽  
Jana Dittmann ◽  
Mario Hildebrandt

AbstractInformation fusion, i.e., the combination of expert systems, has a huge potential to improve the accuracy of pattern recognition systems. During the last decades, various application fields started to use different fusion concepts extensively. The forensic sciences are still hesitant if it comes to blindly applying information fusion. Here, a potentially negative impact on the classification accuracy, if wrongly used or parameterized, as well as the increased complexity (and the inherently higher costs for plausibility validation) of fusion is in conflict with the fundamental requirements for forensics.The goals of this paper are to explain the reasons for this reluctance to accept such a potentially very beneficial technique and to illustrate the practical issues arising when applying fusion. For those practical discussions the exemplary application scenario of morphing attack detection (MAD) is selected with the goal to facilitate the understanding between the media forensics community and forensic practitioners.As general contributions, it is illustrated why the naive assumption that fusion would make the detection more reliable can fail in practice, i.e., why fusion behaves in a field application sometimes differently than in the lab. As a result, the constraints and limitations of the application of fusion are discussed and its impact to (media) forensics is reflected upon.As technical contributions, the current state of the art of MAD is expanded by: The introduction of the likelihood-based fusion and an fusion ensemble composition experiment to extend the set of methods (majority voting, sum-rule, and Dempster-Shafer Theory of evidence) used previously The direct comparison of the two evaluation scenarios “MAD in document issuing” and “MAD in identity verification” using a realistic and some less restrictive evaluation setups A thorough analysis and discussion of the detection performance issues and the reasons why fusion in a majority of the test cases discussed here leads to worse classification accuracy than the best individual classifier


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sebastiano Battiato ◽  
Oliver Giudice ◽  
Francesco Guarnera ◽  
Giovanni Puglisi

AbstractThe JPEG compression algorithm has proven to be efficient in saving storage and preserving image quality thus becoming extremely popular. On the other hand, the overall process leaves traces into encoded signals which are typically exploited for forensic purposes: for instance, the compression parameters of the acquisition device (or editing software) could be inferred. To this aim, in this paper a novel technique to estimate “previous” JPEG quantization factors on images compressed multiple times, in the aligned case by analyzing statistical traces hidden on Discrete Cosine Transform (DCT) histograms is exploited. Experimental results on double, triple and quadruple compressed images, demonstrate the effectiveness of the proposed technique while unveiling further interesting insights.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
T. Rama Reddy ◽  
P. V. G. D. Prasad Reddy ◽  
Rayudu Srinivas ◽  
Ch. V. Raghavendran ◽  
R. V. S. Lalitha ◽  
...  

AbstractEducation acts as a soul in the overall societal development, in one way or the other. Aspirants, who gain their degrees genuinely, will help society with their knowledge and skills. But, on the other side of the coin, the problem of fake certificates is alarming and worrying. It has been prevalent in different forms from paper-based dummy certificates to replicas backed with database tampering and has increased to astronomic levels in this digital era. In this regard, an overlay mechanism using blockchain technology is proposed to store the genuine certificates in digital form and verify them firmly whenever needed without delay. The proposed system makes sure that the certificates, once verified, can be present online in an immutable form for further reference and provides a tamper-proof concealment to the existing certification system. To confirm the credibility of the proposed method, a prototype of blockchain-based credential securing and verification system is developed in ethereum test network. The implementation and test results show that it is a secure and feasible solution to online credential management system.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Samuel Fernández-Menduiña ◽  
Fernando Pérez-González

AbstractCamera fingerprints based on sensor PhotoResponse Non-Uniformity (PRNU) have gained broad popularity in forensic applications due to their ability to univocally identify the camera that captured a certain image. The fingerprint of a given sensor is extracted through some estimation method that requires a few images known to be taken with such sensor. In this paper, we show that the fingerprints extracted in this way leak a considerable amount of information from those images used in the estimation, thus constituting a potential threat to privacy. We propose to quantify the leakage via two measures: one based on the Mutual Information, and another based on the output of a membership inference test. Experiments with practical fingerprint estimators on a real-world image dataset confirm the validity of our measures and highlight the seriousness of the leakage and the importance of implementing techniques to mitigate it. Some of these techniques are presented and briefly discussed.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Benedetta Tondi ◽  
Andrea Costanzo ◽  
Dequ Huang ◽  
Bin Li

AbstractEstimating the primary quantization matrix of double JPEG compressed images is a problem of relevant importance in image forensics since it allows to infer important information about the past history of an image. In addition, the inconsistencies of the primary quantization matrices across different image regions can be used to localize splicing in double JPEG tampered images. Traditional model-based approaches work under specific assumptions on the relationship between the first and second compression qualities and on the alignment of the JPEG grid. Recently, a deep learning-based estimator capable to work under a wide variety of conditions has been proposed that outperforms tailored existing methods in most of the cases. The method is based on a convolutional neural network (CNN) that is trained to solve the estimation as a standard regression problem. By exploiting the integer nature of the quantization coefficients, in this paper, we propose a deep learning technique that performs the estimation by resorting to a simil-classification architecture. The CNN is trained with a loss function that takes into account both the accuracy and the mean square error (MSE) of the estimation. Results confirm the superior performance of the proposed technique, compared to the state-of-the art methods based on statistical analysis and, in particular, deep learning regression. Moreover, the capability of the method to work under general operative conditions, regarding the alignment of the second compression grid with the one of first compression and the combinations of the JPEG qualities of former and second compression, is very relevant in practical applications, where these information are unknown a priori.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Cecilia Pasquini ◽  
Irene Amerini ◽  
Giulia Boato

AbstractThe dependability of visual information on the web and the authenticity of digital media appearing virally in social media platforms has been raising unprecedented concerns. As a result, in the last years the multimedia forensics research community pursued the ambition to scale the forensic analysis to real-world web-based open systems. This survey aims at describing the work done so far on the analysis of shared data, covering three main aspects: forensics techniques performing source identification and integrity verification on media uploaded on social networks, platform provenance analysis allowing to identify sharing platforms, and multimedia verification algorithms assessing the credibility of media objects in relation to its associated textual information. The achieved results are highlighted together with current open issues and research challenges to be addressed in order to advance the field in the next future.


Sign in / Sign up

Export Citation Format

Share Document