hall parameter
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 10)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 10 (4) ◽  
pp. 608-615
Author(s):  
Hiranmoy Mondal ◽  
Sharmistha Ghosh ◽  
Pranab Kanti Roy ◽  
Sewli Chatterjee

We scrutinize and numerically investigate the behavior of magnetic nanofluid flow in stagnation region in the presence of ion-slip and Hall currents. Employing similarity technique, the governing equations modeling the boundary layer flow are switched into highly nonlinear ODEs. The resultant equations are then solved numerically by the method of spectral quasi-linearization. The effect of varying various pertinent parameters within the fluid flow are taken into account and the results are analyzed graphically. It may be noted that the velocity increases in the x- as well as z-directions with an increment in the Hall parameter. The concentration indicates a decreasing trend with increasing values of the Eckert number. The computed results also show that the volume fraction effects diminishes as the Schmidt number increases.


2021 ◽  
Vol 26 (4) ◽  
pp. 128-144
Author(s):  
T. Linga Raju

Abstract An electro-magnetohydrodynamic (EMHD) two fluid flow and heat transfer of ionized gases through a horizontal channel surrounded by non-conducting plates in a rotating framework with Hall currents is investigated. The Hall effect is considered with an assumption that the gases are completely ionized and the strength of the applied transverse magnetic field is strong. The governing equations are solved analytically for the temperature and velocity distributions in two fluid flow regions. The numerical solutions are demonstrated graphically for various physical parameters such the Hartmann number, Hall parameter, rotation parameter, and so on. It was noticed that an increment is either due to the Hall parameter or the rotation parameter reduces the temperature in the two regions.


2021 ◽  
Vol 39 (4) ◽  
pp. 1180-1196
Author(s):  
Rajesh Kumar Chandrawat ◽  
Varun Joshi

In this paper, the unsteady magnetohydrodynamic (MHD) Couette flow of two non-Newtonian immiscible fluids micropolar and micropolar dusty (fluid-particle suspension) are considered in the horizontal channel with heat transfer. A comprehensive mathematical model and computational simulation with the modified cubic B-Spline-Differential Quadrature method (MCB-DQM) is described for unsteady flow. The coupled partial differential equation for fluid and particle-phase are formulated and the effect of viscous dissipation, Joule heating, Hall current, and other hydrodynamic and solutal parameters i. e. Reynolds number, Eckert number, particle concentration parameter, Eringen micropolar material parameter, time, viscosity ratio, and density ratio on the flow rate, micro rotation, and temperature characteristics were investigated. The analysis of obtained results reveals that the fluids and particle velocities are slightly decreasing with Hartmann number, and increasing with time, ion-slip, and Hall parameters. Microrotation declined with Microrotations dropped significantly with ion-slip and Hall parameter and grown Hartman number. The temperature begins to rise as time, Hartman number, and Eckert number grow and declined with Ion-slip and Hall parameter.


2021 ◽  
Vol 26 (2) ◽  
pp. 84-106
Author(s):  
T. Linga Raju ◽  
V.Gowrisankara Rao

Abstract An unsteady magnetohydrodynamic (MHD) heat transfer two-fluid flow of ionized gases through a horizontal channel between parallel non-conducting plates, by taking Hall currents into account is studied. The governing partial differential equations that describe the flow and heat transfer under the adopted conditions are solved for the velocity and temperature distributions by a regular perturbation technique. Profiles for the velocity and temperature distributions as well the rates of heat transfer coefficient are presented graphically, and a parametric study is performed. The results reveal that the combined effects of the Hartmann number, Hall parameter, and the ratios of viscosities, heights, electrical and thermal conductivities have a significant impact on an unsteady MHD heat transfer two-ionized fluid flow characteristics.


2020 ◽  
Vol 140 (10) ◽  
pp. 709-714
Author(s):  
Shunsuke Sakai ◽  
Shota Kon ◽  
Kazumasa Takahashi ◽  
Toru Sasaki ◽  
Takashi Kikuchi ◽  
...  

2020 ◽  
Vol 16 (6) ◽  
pp. 1595-1616
Author(s):  
N. Mahato ◽  
S.M. Banerjee ◽  
R.N. Jana ◽  
S. Das

PurposeThe article focuses on the magnetohydrodynamic (MHD) convective flow of MoS2-SiO2 /ethylene glycol (EG) hybrid nanofluid. The effectiveness of Hall current, periodically heating wall and shape factor of nanoparticles on the magnetized flow of hybrid nanocomposite molybdenum disulfide- silicon dioxide (MoS2-SiO2) suspended in ethylene glycol (EG) in a vertical rotating channel under the influence of strong magnetic dipole (Hall effect) and thermal radiation is assessed. One of the channel walls has an oscillatory temperature gradient. Four different shapes (i.e. brick, cylinder, platelet and blade) of nanoparticles disseminated in base fluid (EG) are considered for simulation of the flow.Design/methodology/approachThe analytical solution of governing equations has been presented. Influences of emerging physical parameters on the velocity and temperature profiles, the shear stresses and the rate of heat transfer are pointed out and discussed via graphs and tables.FindingsThe analysis revealed that Hall parameter has suppressing behavior on the velocity profiles within the rotating channel. The impact of nanoparticle shape factor advances the temperature characteristics significantly in the rotating channel. Brick-shape nanoparticles put up relatively low-temperature distribution in the rotating channel. The Hall parameter reduces the amplitudes of the shear stresses at the channel wall. However, the radiation parameter enhances the amplitude of the rate of heat transfer at the channel wall.Social implicationsThe important technical advantage of hybrid composition of nanoparticles as a drug carrier is its stability, high thermal conductivity, high load carrying capacity, etc. The proposed model may be beneficial in biomedical engineering, automobile parts, mineral and cleaning oils manufacturing, rubber and plastic industries.Originality/valueTo the best of our knowledge, there is little or no report on the aspects of assessment of the effectiveness of Hall current and nanoparticle shape factor on an MHD flow and heat transfer of an electrically conducting MoS2-SiO2/EG ethylene glycol-based hybrid nanofluid confined in a vertical channel with periodically varying wall temperature subject to a rotating frame. The present work furnishes a robust benchmark for the dynamics of nanofluids.


2020 ◽  
Vol 17 ◽  
pp. 117-132
Author(s):  
Gamil Shalaby

 An analysis is presented to investigate the Hall and Ion-slip effects on non-Newtonian couple stress fluid flow between vertical channel in the presence of thermophoresis phenomena. The considered fluid obeys to the viscoelastic second-grade model. The problem is modulated mathematically to describe continuity, momentum, temperature, and concentration equations. The influences of physical parameters of dimensionless equations of velocity components () and (), temperature () and concentration () have been shown in some of figuthe res, as well as skin friction (), Nusselt number() and Sherwood number() have been computed. It is found that the velocity  decreases with increasing in Hall parameter and Ion slip parameters.


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 592 ◽  
Author(s):  
Mohamed Abd El-Aziz ◽  
Ahmed A. Afify

The impacts of entropy generation and Hall current on MHD Casson fluid over a stretching surface with velocity slip factor have been numerically analyzed. Numerical work for the governing equations is established by using a shooting method with a fourth-order Runge–Kutta integration scheme. The outcomes show that the entropy generation is enhanced with a magnetic parameter, Reynolds number and group parameter. Further, the reverse behavior is observed with the Hall parameter, Eckert number, Casson parameter and slip factor. Also, it is viewed that Bejan number reduces with a group parameter.


Author(s):  
Y. M. Aiyesimi ◽  
M. Jiya ◽  
G. A. Bolarin ◽  
O. V. Akinremi

The combined effects of chemical reaction, radially applied magnetic field and Hall effect on entropy generation of a steady third grade magnetohydrodynamic fluid flowing through a uniformly circular pipe was studied. The governing equations are presented and the resulting non-linear dimensionless equations are solved numerically using Galerkin Weighted Residual Method. The velocity, temperature and concentration profile were obtained and utilized in computing the entropy number. A parametric study of germane parameters involved are presented graphically and discussed. It was observed that irreversibility due to heat transfer dominates the flow compared to fluid friction and Hall parameter inhibits the Bejan number while Magnetic parameter enhances the Bejan number.


Sign in / Sign up

Export Citation Format

Share Document