granitic intrusion
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 33 (6) ◽  
pp. 703-716
Author(s):  
Leonid Shumlyanskyy ◽  
Gerhard Franz ◽  
Sarah Glynn ◽  
Oleksandr Mytrokhyn ◽  
Dmytro Voznyak ◽  
...  

Abstract. The origin of large miarolitic (also known as “chamber”) pegmatites is not fully understood although they may have great economic value. The formation of cavities in magmatic bodies is related to melt degassing and gas or fluid flow through partially solidified magma. In this paper, the origin of the Volyn pegmatite field, located in the Palaeoproterozoic Korosten anorthosite–mangerite–charnockite–granite (AMCG) complex, North-Western region of the Ukrainian Shield, is discussed. Pegmatites of the field host deposits of piezoelectric quartz that is accompanied by gem-quality beryl and topaz. The Volyn pegmatite field is confined to granites located in the south-western part of the Korosten complex and extends for 22 km along the contact with the anorthosite massif within the Korosten plutonic complex. Geological data indicate hybridization of basic melts and partly crystallized granites, as well as direct impact of fluids derived from basic melts on the chamber pegmatites. The new U–Pb zircon ages obtained for granites and pegmatites of the Korosten complex confirm that the rock assemblage in the northern part of the complex crystallized between 1800 and 1780 Ma, whereas rocks in the southern part intruded mainly between 1768 and 1755 Ma. U–Pb zircon ages for granites from the south-western part of the Korosten complex indicate that granites were emplaced at 1770–1765 Ma, a few million years prior to the intrusion of the gabbro–anorthosite massif (1762–1758 Ma), while chamber pegmatites in these granites crystallized at 1760 ± 3 Ma, coevally with the basic rocks. Ultimately, the formation of the chamber pegmatites was related to the reheating of the semi-crystallized granitic intrusion and to fluids migrating from the underlying gabbro–anorthosite massif.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yongqing Chen ◽  
Zhenyi Wang ◽  
Jiande Li

The giant Gejiu Sn–Cu polymetallic ore deposit is one of the largest Sn producers in the world, and is related in time and space to highly evolved S type granitic intrusion. The mineralization processes can be divided into four stages: (I) skarnization; (II) greisenization; (III) cassiterite–sulfid; and (IV) cassiterite–tourmaline–quartz. Five types of fluid inclusions were recognized using optical petrography, microthermometry, and Raman spectroscopy. The results of microthermometry revealed the evolution of the ore-forming fluid, from a high temperature with low–to–high salinity to a low temperature with low–to–intermediate salinity. Stage I, skarn Sn–Cu ores were formed by bimetasomatism between the granitic intrusion and the surrounding rock under near–critical conditions with the help of ore-forming fluid. Stage II, the fluid was separated into the coexisting liquid and vapor phases in equilibrium condition, and a large amount of cassiterite–scheelite–beryl–lithium muscovite minerals were formed during greisenization. Stage III, mixing, boiling and immiscibility of different types of fluid solutions took place with a decline in temperature and pressure as well as a change in the Eh–pH, which caused amounts of cassiterites and sulfides to precipitate. Stage IV, stockwork ores characterized by cassiterite–tourmaline–quartz minerals were formed associated with the low temperature and low salinity hydrothermal liqiud activity. The laser Raman spectra identified CH4 in all ore-forming stages, indicating that the ore deposits might have been formed in a relatively reduced environment. CO2 appeared in all stages in addition to Stage I, and might have been formed due to both immiscibility of fluid solutions with dropping pressure as well as temperature and mixing of different types of fluid solutions. In conclusion, the bimetasomatism, mixing, and immiscibility of fluid solutions should have been responsible for the formation of giant Sn–Cu polymetallic deposits.


2021 ◽  
Author(s):  
Richard Spiess ◽  
Antonio Langone ◽  
Alfredo Caggianelli ◽  
Finlay M. Stuart ◽  
Martina Zucchi ◽  
...  

<p>Exhumation and cooling of upper crustal plutons is generally assumed to develop in the brittle domain, thus determining an abrupt passage from crystallization to faulting. To challenge this general statement, we have applied an integrated approach involving meso- and micro-structural studies, thermochronology, geochronology and rheological modeling. We have analyzed the Miocene syn-tectonic Porto Azzurro pluton on Elba (Tuscan archipelago – Italy), emplaced in an extensional setting, and have realized that its fast exhumation is accompanied by localized ductile shear zones, developing along dykes and veins, later affected by brittle deformation. This is unequivocally highlighted by field studies and the analysis of microstructures with EBSD. In order to constrain the emplacement and exhumation rate of the Porto Azzurro pluton we performed U-Pb zircon dating and (U+Th)/He apatite thermochronology. It results in a magma emplacement age of 6.4 ± 0.4 Ma and an exhumation rate of 3.4 to 3.9 mm/yr. By thermo-rheological modeling we were able to establish that localized ductile deformation occurred at two different time steps: within felsic dykes when the pluton first entered into the brittle field at 380 kyr, and along quartz-rich hydrothermal veins at c. 550 kyr after pluton emplacement. Hence, the major conclusion of our data is that ductile deformation can affect a granitic intrusion even when it is entered into the brittle domain in a fast exhuming extensional regime.</p>


2020 ◽  
Author(s):  
Xingchen Yang ◽  
Fengbao Ji ◽  
Peisheng Ye ◽  
Jinbao Yang ◽  
Maotang Cai ◽  
...  

2019 ◽  
Vol 157 (7) ◽  
pp. 1045-1067
Author(s):  
D Prakash ◽  
DK Patel ◽  
MK Yadav ◽  
B Vishal ◽  
S Tewari ◽  
...  

AbstractThe study area belongs to the Singhbhum metamorphic belt of Jharkhand, situated in the eastern part of India. The spatial distribution of the index minerals in the pelitic schists of the area shows Barrovian type of metamorphism. Three isograds, viz. garnet, staurolite and sillimanite, have been delineated and the textural study of the schists has revealed a time relation between crystallization and deformation. Series of folds with shifting values of plunges in the supracrustal rocks having axial-planar schistosity to the folds have been widely cited. Development of these folds could be attributed to the second phase of deformation. In total, two phases of deformation, D1 and D2, in association with two phases of metamorphism, M1 and M2, have been lined up in the study area. Chemographic plots of reactant and product assemblages corresponding to various metamorphic reactions suggest that the pattern of metamorphic zones mapped in space is in coherence with the temporal-sequential change during prograde metamorphism. The prograde P–T evolution of the study area has been obtained using conventional geothermobarometry, internally consistent winTWQ program and Perple_X software in the MnNCKFMASHTO model system. Our observations suggest that the progressive metamorphism in the area is not related to granitic intrusion or migmatization but that it was possibly the ascending plume that resulted in the M1 phase of metamorphism followed by D1 deformation. The second and prime metamorphic phase, M2, with its possible heat source generated by crustal overloading, was preceded by D1 and it lasted until late- to post-D2 deformation.


2019 ◽  
Vol 113 ◽  
pp. 103075 ◽  
Author(s):  
Lipeng Zhang ◽  
Rongqing Zhang ◽  
Yuxiao Chen ◽  
Saijun Sun ◽  
Jinlong Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document