compact metrizable space
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Kyriakos Keremedis ◽  
Eleftherios Tachtsis ◽  
Eliza Wajch

AbstractIn the absence of the axiom of choice, the set-theoretic status of many natural statements about metrizable compact spaces is investigated. Some of the statements are provable in $$\mathbf {ZF}$$ ZF , some are shown to be independent of $$\mathbf {ZF}$$ ZF . For independence results, distinct models of $$\mathbf {ZF}$$ ZF and permutation models of $$\mathbf {ZFA}$$ ZFA with transfer theorems of Pincus are applied. New symmetric models of $$\mathbf {ZF}$$ ZF are constructed in each of which the power set of $$\mathbb {R}$$ R is well-orderable, the Continuum Hypothesis is satisfied but a denumerable family of non-empty finite sets can fail to have a choice function, and a compact metrizable space need not be embeddable into the Tychonoff cube $$[0, 1]^{\mathbb {R}}$$ [ 0 , 1 ] R .


2018 ◽  
Vol 19 (1) ◽  
pp. 9
Author(s):  
Leonard R. Rubin

<p>It has been shown by S. Mardešić that if a compact metrizable space X has dim X ≥ 1 and X is the inverse limit of an inverse sequence of compact triangulated polyhedra with simplicial bonding maps, then X must contain an arc.  We are going  to prove that  if X = (|K<sub>a</sub>|,p<sup>b</sup><sub>a</sub>,(A,)<a href="http://www.codecogs.com/eqnedit.php?latex=\preceq" target="_blank"><img title="\preceq" src="http://latex.codecogs.com/gif.latex?\preceq" alt="" /></a>)is an inverse system in set theory of triangulated polyhedra|K<sub>a</sub>|with simplicial  bonding  functions p<sup>b</sup><sub>a</sub> and X = lim X,  then  there  exists  a uniquely determined sub-inverse system X<sub>X</sub>= (|L<sub>a</sub>|, p<sup>b</sup><sub>a</sub>|L<sub>b</sub>|,(A,<a href="http://www.codecogs.com/eqnedit.php?latex=\preceq" target="_blank"><img title="\preceq" src="http://latex.codecogs.com/gif.latex?\preceq" alt="" /></a>)) of X where for each a, L<sub>a</sub> is a subcomplex of K<sub>a</sub>, each p<sup>b</sup><sub>a</sub>|L<sub>b</sub>|:|L<sub>b</sub>| → |L<sub>a</sub>| is  surjective,  and lim X<sub>X</sub> = X. We shall use this to generalize the Mardešić result by characterizing when the inverse limit of an inverse sequence of triangulated polyhedra with simplicial bonding maps must contain a topological n-cell and do the same in the case of an inverse system of finite triangulated polyhedra with simplicial bonding maps. We shall also characterize when the inverse limit of an inverse sequence of triangulated polyhedra with simplicial bonding maps must contain an embedded copy of the Hilbert cube. In each of the above settings, all the polyhedra have the weak topology or all have the metric topology(these topologies being identical when the polyhedra are finite).</p>


2018 ◽  
Vol 39 (9) ◽  
pp. 2570-2591
Author(s):  
TOM MEYEROVITCH

Consider a countable amenable group acting by homeomorphisms on a compact metrizable space. Chung and Li asked if expansiveness and positive entropy of the action imply existence of an off-diagonal asymptotic pair. For algebraic actions of polycyclic-by-finite groups, Chung and Li proved that they do. We provide examples showing that Chung and Li’s result is near-optimal in the sense that the conclusion fails for some non-algebraic action generated by a single homeomorphism, and for some algebraic actions of non-finitely generated abelian groups. On the other hand, we prove that every expansive action of an amenable group with positive entropy that has the pseudo-orbit tracing property must admit off-diagonal asymptotic pairs. Using Chung and Li’s algebraic characterization of expansiveness, we prove the pseudo-orbit tracing property for a class of expansive algebraic actions. This class includes every expansive principal algebraic action of an arbitrary countable group.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Saak S. Gabriyelyan ◽  
Sidney A. Morris

IfXandYare Tychonoff spaces, letL(X)andL(Y)be the free locally convex space overXandY, respectively. For generalXandY, the question of whetherL(X)can be embedded as a topological vector subspace ofL(Y)is difficult. The best results in the literature are that ifL(X)can be embedded as a topological vector subspace ofL(I), whereI=[0,1], thenXis a countable-dimensional compact metrizable space. Further, ifXis a finite-dimensional compact metrizable space, thenL(X)can be embedded as a topological vector subspace ofL(I). In this paper, it is proved thatL(X)can be embedded inL(R)as a topological vector subspace ifXis a disjoint union of a countable number of finite-dimensional locally compact separable metrizable spaces. This is the case ifX=Rn,  n∈N.It is also shown that ifGandQdenote the Cantor space and the Hilbert cubeIN, respectively, then (i)L(X)is embedded inL(G)if and only ifXis a zero-dimensional metrizable compact space; (ii)L(X)is embedded inL(Q)if and only ifYis a metrizable compact space.


2017 ◽  
Vol 2017 ◽  
pp. 1-4
Author(s):  
Marek Wójtowicz

Let Ω and I denote a compact metrizable space with card(Ω)≥2 and the unit interval, respectively. We prove Milutin and Cantor-Bernstein type theorems for the spaces M(Ω) of Radon measures on compact Hausdorff spaces Ω. In particular, we obtain the following results: (1) for every infinite closed subset K of βN the spaces M(K), M(βN), and M(Ω2ℵ0) are order-isometric; (2) for every discrete space Γ with m≔card(Γ)>ℵ0 the spaces M(βΓ) and M(I2m) are order-isometric, whereas there is no linear homeomorphic injection from C(βT) into C(I2m).


2016 ◽  
Vol 16 (06) ◽  
pp. 1650020
Author(s):  
Henri Comman

We show that for a [Formula: see text]-action (or [Formula: see text]-action) on a non-empty compact metrizable space [Formula: see text], the existence of a affine space dense in the set of continuous functions on [Formula: see text] constituted by elements admitting a unique equilibrium state implies that each invariant measure can be approximated weakly[Formula: see text] and in entropy by a sequence of measures which are unique equilibrium states.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Hanbiao Yang ◽  
Katsuro Sakai ◽  
Katsuhisa Koshino

Abstract Let X be an infinite compact metrizable space having only a finite number of isolated points and Y be a non-degenerate dendrite with a distinguished end point v. For each continuous map ƒ : X → Y , we define the hypo-graph ↓vƒ = ∪ x∈X {x} × [v, ƒ (x)], where [v, ƒ (x)] is the unique arc from v to ƒ (x) in Y . Then we can regard ↓v C(X, Y ) = {↓vƒ | ƒ : X → Y is continuous} as the subspace of the hyperspace Cld(X × Y ) of nonempty closed sets in X × Y endowed with the Vietoris topology. Let be the closure of ↓v C(X, Y ) in Cld(X ×Y ). In this paper, we shall prove that the pair , ↓v C(X, Y )) is homeomorphic to (Q, c0), where Q = Iℕ is the Hilbert cube and c0 = {(xi )i∈ℕ ∈ Q | limi→∞xi = 0}.


Author(s):  
John Roe ◽  
Paul Siegel

AbstractLet X be a locally compact metrizable space. We show that the Paschke dual construction, which associates to a representation of C0(X) its commutant modulo locally compact operators, can be sheafified. We use this observation to simplify several constructions in analytic K-homology.


2011 ◽  
Vol 32 (5) ◽  
pp. 1585-1614 ◽  
Author(s):  
DAVID KERR ◽  
PIOTR W. NOWAK

AbstractWe study a notion of residual finiteness for continuous actions of discrete groups on compact Hausdorff spaces and how it relates to the existence of norm microstates for the reduced crossed product. Our main result asserts that an action of a free group on a zero-dimensional compact metrizable space is residually finite if and only if its reduced crossed product admits norm microstates, i.e., is an MF algebra.


Sign in / Sign up

Export Citation Format

Share Document