simplicial category
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
Kevin Coulembier ◽  
Ross Street ◽  
Michel van den Bergh

Abstract Given a monoidal category $\mathcal C$ with an object J, we construct a monoidal category $\mathcal C[{J^ \vee }]$ by freely adjoining a right dual ${J^ \vee }$ to J. We show that the canonical strong monoidal functor $\Omega :\mathcal C \to \mathcal C[{J^ \vee }]$ provides the unit for a biadjunction with the forgetful 2-functor from the 2-category of monoidal categories with a distinguished dual pair to the 2-category of monoidal categories with a distinguished object. We show that $\Omega :\mathcal C \to \mathcal C[{J^ \vee }]$ is fully faithful and provide coend formulas for homs of the form $\mathcal C[{J^ \vee }](U,\,\Omega A)$ and $\mathcal C[{J^ \vee }](\Omega A,U)$ for $A \in \mathcal C$ and $U \in \mathcal C[{J^ \vee }]$ . If ${\rm{N}}$ denotes the free strict monoidal category on a single generating object 1, then ${\rm{N[}}{{\rm{1}}^ \vee }{\rm{]}}$ is the free monoidal category Dpr containing a dual pair – ˧ + of objects. As we have the monoidal pseudopushout $\mathcal C[{J^ \vee }] \simeq {\rm{Dpr}}{{\rm{ + }}_{\rm{N}}}\mathcal C$ , it is of interest to have an explicit model of Dpr: we provide both geometric and combinatorial models. We show that the (algebraist’s) simplicial category Δ is a monoidal full subcategory of Dpr and explain the relationship with the free 2-category Adj containing an adjunction. We describe a generalization of Dpr which includes, for example, a combinatorial model Dseq for the free monoidal category containing a duality sequence X0 ˧ X1 ˧ X2 ˧ … of objects. Actually, Dpr is a monoidal full subcategory of Dseq.


2019 ◽  
Vol 2020 (20) ◽  
pp. 6769-6814
Author(s):  
Pavol Ševera ◽  
Michal Širaň

Abstract We consider the problem of integration of $L_\infty $-algebroids (differential non-negatively graded manifolds) to $L_\infty $-groupoids. We first construct a “big” Kan simplicial manifold (Fréchet or Banach) whose points are solutions of a (generalized) Maurer–Cartan equation. The main analytic trick in our work is an integral transformation sending the solutions of the Maurer–Cartan equation to closed differential forms. Following the ideas of Ezra Getzler, we then impose a gauge condition that cuts out a finite-dimensional simplicial submanifold. This “smaller” simplicial manifold is (the nerve of) a local Lie $\ell $-groupoid. The gauge condition can be imposed only locally in the base of the $L_\infty $-algebroid; the resulting local $\ell $-groupoids glue up to a coherent homotopy, that is, we get a homotopy coherent diagram from the nerve of a good cover of the base to the (simplicial) category of local $\ell $-groupoids. Finally, we show that a $k$-symplectic differential non-negatively graded manifold integrates to a local $k$-symplectic Lie $\ell$-groupoid; globally, these assemble to form an $A_\infty$-functor. As a particular case for $k=2$, we obtain integration of Courant algebroids.


2011 ◽  
Vol 150 (3) ◽  
pp. 489-504 ◽  
Author(s):  
EMILY RIEHL

AbstractThe homotopy coherent nerve from simplicial categories to simplicial sets and its left adjoint are important to the study of (∞, 1)-categories because they provide a means for comparing two models of their respective homotopy theories, giving a Quillen equivalence between the model structures for quasi-categories and simplicial categories. The functor also gives a cofibrant replacement for ordinary categories, regarded as trivial simplicial categories. However, the hom-spaces of the simplicial category X arising from a quasi-category X are not well understood. We show that when X is a quasi-category, all Λ21 horns in the hom-spaces of its simplicial category can be filled. We prove, unexpectedly, that for any simplicial set X, the hom-spaces of X are 3-coskeletal. We characterize the quasi-categories whose simplicial categories are locally quasi, finding explicit examples of 3-dimensional horns that cannot be filled in all other cases. Finally, we show that when X is the nerve of an ordinary category, X is isomorphic to the simplicial category obtained from the standard free simplicial resolution, showing that the two known cofibrant “simplicial thickenings” of ordinary categories coincide, and furthermore its hom-spaces are 2-coskeletal.


Sign in / Sign up

Export Citation Format

Share Document