graded manifold
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Giovanna Citti ◽  
Gianmarco Giovannardi ◽  
Manuel Ritoré

AbstractWe consider in this paper an area functional defined on submanifolds of fixed degree immersed into a graded manifold equipped with a Riemannian metric. Since the expression of this area depends on the degree, not all variations are admissible. It turns out that the associated variational vector fields must satisfy a system of partial differential equations of first order on the submanifold. Moreover, given a vector field solution of this system, we provide a sufficient condition that guarantees the possibility of deforming the original submanifold by variations preserving its degree. As in the case of singular curves in sub-Riemannian geometry, there are examples of isolated surfaces that cannot be deformed in any direction. When the deformability condition holds we compute the Euler–Lagrange equations. The resulting mean curvature operator can be of third order.


Author(s):  
Olivier Brahic ◽  
Marco Zambon

We consider homotopy actions of a Lie algebroid on a graded manifold, defined as suitable [Formula: see text]-algebra morphisms. On the “semi-direct product” we construct a homological vector field that projects to the Lie algebroid. Our main theorem states that this construction is a bijection. Since several classical geometric structures can be described by homological vector fields as above, we can display many explicit examples, involving Lie algebroids (including extensions, representations up to homotopy and their cocycles) as well as transitive Courant algebroids.


2020 ◽  
Vol 8 (1) ◽  
pp. 68-91
Author(s):  
Gianmarco Giovannardi

AbstractThe deformability condition for submanifolds of fixed degree immersed in a graded manifold can be expressed as a system of first order PDEs. In the particular but important case of ruled submanifolds, we introduce a natural choice of coordinates, which allows to deeply simplify the formal expression of the system, and to reduce it to a system of ODEs along a characteristic direction. We introduce a notion of higher dimensional holonomy map in analogy with the one-dimensional case [29], and we provide a characterization for singularities as well as a deformability criterion.


2019 ◽  
Vol 2020 (20) ◽  
pp. 6769-6814
Author(s):  
Pavol Ševera ◽  
Michal Širaň

Abstract We consider the problem of integration of $L_\infty $-algebroids (differential non-negatively graded manifolds) to $L_\infty $-groupoids. We first construct a “big” Kan simplicial manifold (Fréchet or Banach) whose points are solutions of a (generalized) Maurer–Cartan equation. The main analytic trick in our work is an integral transformation sending the solutions of the Maurer–Cartan equation to closed differential forms. Following the ideas of Ezra Getzler, we then impose a gauge condition that cuts out a finite-dimensional simplicial submanifold. This “smaller” simplicial manifold is (the nerve of) a local Lie $\ell $-groupoid. The gauge condition can be imposed only locally in the base of the $L_\infty $-algebroid; the resulting local $\ell $-groupoids glue up to a coherent homotopy, that is, we get a homotopy coherent diagram from the nerve of a good cover of the base to the (simplicial) category of local $\ell $-groupoids. Finally, we show that a $k$-symplectic differential non-negatively graded manifold integrates to a local $k$-symplectic Lie $\ell$-groupoid; globally, these assemble to form an $A_\infty$-functor. As a particular case for $k=2$, we obtain integration of Courant algebroids.


2017 ◽  
Vol 2017 ◽  
pp. 1-19
Author(s):  
G. Sardanashvily ◽  
W. Wachowski

The differential calculus, including formalism of linear differential operators and the Chevalley–Eilenberg differential calculus, overN-graded commutative rings and onN-graded manifolds is developed. This is a straightforward generalization of the conventional differential calculus over commutative rings and also is the case of the differential calculus over Grassmann algebras and onZ2-graded manifolds. We follow the notion of anN-graded manifold as a local-ringed space whose body is a smooth manifoldZ. A key point is that the graded derivation module of the structure ring of graded functions on anN-graded manifold is the structure ring of global sections of a certain smooth vector bundle over its bodyZ. Accordingly, the Chevalley–Eilenberg differential calculus on anN-graded manifold provides it with the de Rham complex of graded differential forms. This fact enables us to extend the differential calculus onN-graded manifolds to formalism of nonlinear differential operators, by analogy with that on smooth manifolds, in terms of graded jet manifolds ofN-graded bundles.


2014 ◽  
Vol 12 (01) ◽  
pp. 1550006 ◽  
Author(s):  
Alexei Kotov ◽  
Thomas Strobl

A Q-manifold is a graded manifold endowed with a vector field of degree 1 squaring to zero. We consider the notion of a Q-bundle, that is, a fiber bundle in the category of Q-manifolds. To each homotopy class of "gauge fields" (sections in the category of graded manifolds) and each cohomology class of a certain subcomplex of forms on the fiber we associate a cohomology class on the base. As any principal bundle yields canonically a Q-bundle, this construction generalizes Chern–Weil classes. Novel examples include cohomology classes that are locally de Rham differential of the integrands of topological sigma models obtained by the AKSZ-formalism in arbitrary dimensions. For Hamiltonian Poisson fibrations one obtains a characteristic 3-class in this manner. We also relate the framework to equivariant cohomology and Lecomte's characteristic classes of exact sequences of Lie algebras.


2013 ◽  
Vol 10 (06) ◽  
pp. 1350024 ◽  
Author(s):  
NORIAKI IKEDA ◽  
KOZO KOIZUMI

Generalized current algebras introduced by Alekseev and Strobl in two dimensions are reconstructed by a graded manifold and a graded Poisson brackets. We generalize their current algebras to higher dimensions. QP-manifolds provide the unified structures of current algebras in any dimension. Current algebras give rise to structures of Leibniz/Loday algebroids, which are characterized by QP-structures. Especially, in three dimensions, a current algebra has a structure of a Lie algebroid up to homotopy introduced by Uchino and one of the authors, which has a bracket of a generalization of the Courant–Dorfman bracket. Anomaly cancellation conditions are reinterpreted as generalizations of the Dirac structure.


Author(s):  
Rolf Schimmrigk ◽  
Steven Duplij ◽  
Antoine Van Proeyen ◽  
Władysław Marcinek ◽  
Gert Roepstorff ◽  
...  
Keyword(s):  

1998 ◽  
Vol 10 (01) ◽  
pp. 47-79 ◽  
Author(s):  
T. Stavracou

The geometry of graded principal bundles is discussed in the framework of graded manifold theory of Kostant–Berezin–Leites. We first review the basic elements of this theory establishing at the same time supplementary properties of graded Lie groups and their actions. Particular emphasis is given in introducing and studying free actions in the graded context. Next, we investigate the geometry of graded principal bundles; we prove that they have several properties analogous to those of ordinary principal bundles. In particular, we show that the sheaf of vertical derivations on a graded principal bundle coincides with the graded distribution induced by the action of the structure graded Lie group. This result leads to a natural definition of the graded connection in terms of graded distributions; its relation with Lie superalgebra-valued graded differential forms is also exhibited. Finally, we define the curvature for the graded connection and we prove that the curvature controls the involutivity of the horizontal graded distribution corresponding to the graded connection.


Sign in / Sign up

Export Citation Format

Share Document